Computer Science > Machine Learning
[Submitted on 17 Jul 2025]
Title:Leveraging Asynchronous Cross-border Market Data for Improved Day-Ahead Electricity Price Forecasting in European Markets
View PDF HTML (experimental)Abstract:Accurate short-term electricity price forecasting is crucial for strategically scheduling demand and generation bids in day-ahead markets. While data-driven techniques have shown considerable prowess in achieving high forecast accuracy in recent years, they rely heavily on the quality of input covariates. In this paper, we investigate whether asynchronously published prices as a result of differing gate closure times (GCTs) in some bidding zones can improve forecasting accuracy in other markets with later GCTs. Using a state-of-the-art ensemble of models, we show significant improvements of 22% and 9% in forecast accuracy in the Belgian (BE) and Swedish bidding zones (SE3) respectively, when including price data from interconnected markets with earlier GCT (Germany-Luxembourg, Austria, and Switzerland). This improvement holds for both general as well as extreme market conditions. Our analysis also yields further important insights: frequent model recalibration is necessary for maximum accuracy but comes at substantial additional computational costs, and using data from more markets does not always lead to better performance - a fact we delve deeper into with interpretability analysis of the forecast models. Overall, these findings provide valuable guidance for market participants and decision-makers aiming to optimize bidding strategies within increasingly interconnected and volatile European energy markets.
Submission history
From: Maria Margarida Mascarenhas [view email][v1] Thu, 17 Jul 2025 15:59:00 UTC (956 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.