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Abstract

Modeling data as being sampled from a union of independent subspaces has been
widely applied to a number of real world applications. However, dimensional-
ity reduction approaches that theoretically preserve this independence assumption
have not been well studied. Our key contribution is to show that 2K projection
vectors are sufficient for the independence preservation of any K class data sam-
pled from a union of independent subspaces. It is this non-trivial observation that
we use for designing our dimensionality reduction technique. In summary, we
propose a novel dimensionality reduction algorithm that theoretically preserves
this structure for a given dataset. We support our theoretical analysis with empiri-
cal results on both synthetic and real world data achieving state-of-the-art results
compared to popular dimensionality reduction techniques.

1 Introduction

A number of real world applications model data as being sampled from a union of independent
subspaces. These applications include image representation and compression [6]], systems theory
[12], image segmentation [15]], motion segmentation [13]], face clustering [7, 5] and texture seg-
mentation [8]], to name a few. Dimensionality reduction is generally used prior to applying these
methods because most of these algorithms optimize expensive loss functions like nuclear norm, ¢
regularization, e.t.c. Most of these applications simply apply off-the-shelf dimensionality reduction
techniques or resize images (in case of image data) as a pre-processing step.

The union of independent subspace model can be thought of as a generalization of the traditional
approach of representing a given set of data points using a single low dimensional subspace (e.g.
Principal Component Analysis). For the application of algorithms that model data at hand with this
independence assumption, the subspace structure of the data needs to be preserved after dimension-
ality reduction. Although a number of existing dimensionality reduction techniques [10} 3. [1} 4] try
to preserve the spacial geometry of any given data, no prior work has tried to explicitly preserve the
independence between subspaces to the best of our knowledge.

In this paper, we propose a novel dimensionality reduction technique that preserves independence
between multiple subspaces. In order to achieve this, we first show that for any two disjoint sub-
spaces with arbitrary dimensionality, there exists a two dimensional subspace such that both the
subspaces collapse to form two lines. We then extend this non-trivial idea to multi-class case and
show that 2K projection vectors are sufficient for preserving the subspace structure of a K class
dataset. Further, we design an efficient algorithm that finds the projection vectors with the afore-
mentioned properties while being able to handle corrupted data at the same time.
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2 Preliminaries

Let 51,52 ... 5k be K subspaces in R”. We say that these K subspaces are independent if there
does not exist any non-zero vector in .S; which is a linear combination of vectors in the other K — 1
subspaces. Let the columns of the matrix B; € R"*? denote the support of the i*" subspace of d
dimensions. Then any vector in this subspace can be represented as + = B;w Yw € R%. Now we
define the notion of margin between two subspaces.

Definition 1 (Subspace Margin) Subspaces S; and S; are separated by margin vy;; if

{u, v)
max NTRRTEETRTE
u€S;,vES; ||uH2||U||2

Yij = (1)

Thus margin between any two subspaces is defined as the maximum dot product between two unit
vectors (u, v), one from either subspace. Such a vector pair (u, v) is known as the principal vector
pair between the two subspaces while the angle between these vectors is called the principal angle.

With these definitions of independent subspaces and margin, assume that we are given a dataset
which has been sampled from a union of independent linear subspaces. Specifically, each class in
this dataset lies along one such independent subspace. Then our goal is to reduce the dimensionality
of this dataset such that after projection, each class continues to lie along a linear subspace and that
each such subspace is independent of all others. Formally, let X = [X1, Xa..., Xk| be a K class
dataset in R"™ such that vectors from class ¢ (x € X;) lie along subspace S;. Then our goal is to
find a projection matrix (P € R™*™) such that the projected data vectors X; := {PTz : z € X;}
(i € {1... K}) are such that data vectors X; belong to a linear subspace (S; in R"). Further, each
subspace S; (i € {1...K?}) is independent of all others.

3 Proposed Approach

In this section, we propose a novel subspace learning approach applicable to labeled datasets that
theoretically guarantees independent subspace structure preservation. The number of projection
vectors required by our approach is not only independent of the size of the dataset but is also fixed,
depending only on the number of classes. Specifically, we show that for any K class labeled dataset
with independent subspace structure, only 2K projection vectors are required for structure preser-
vation.

The entire idea of being able to find a fixed number of projection vectors for the structure preserva-
tion of a K class dataset is motivated by theorem [I] This theorem states a useful property of any
pair of disjoint subspaces.

Theorem 1 Let unit vectors vi and vo be the it" principal vector pair for any two disjoint subspaces
S1 and Sy in R™. Let the columns of the matrix P € R"*2 be any two orthonormal vectors in the
span of vi and vy. Then for all vectors x € S, PTy = at; (7 € {1,2}), where o € R depends on

. . tT'¢
x and t; € R? is a fixed vector independent of x. Further, m =T vy

Proof: We use the notation (M); to denote the Gt column vector of matrix M for any arbitrary
matrix M. We claim that t; = Pij (7 € {1,2}). Also, without any loss of generality, assume that
(P)1 = vi1. Then in order to prove theorem it suffices to show that Vx € Sy, (P)¥x = 0. By
symmetry, Yz € So, PTx will also lie along a line in the subspace spanned by the columns of P.

Let the columns of B, € R™ % and By € R™*% be the support of Sy and Sy respectively, where d;
and dy are the dimensionality of the two subspaces. Then we can represent vy and vy as v1 = Biw;
and vo = Bsws for some w1 € R4 and we € R%. Let Byw be any arbitrary vector in S where
w € R%. Then we need to show that T := (Byw)T (P)y = OVw. Notice that,

T = (BlU})T(BQwQ — (’UJ{B?BZ’LUQ)Bl'LUl)

= w? (BT Bywy — (wl BT Byws)w,) Yw
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(a) Independent subspaces in 3 (b) Subspaces after projection
dimensions

Figure 1: A three dimensional example of the application of theorem[T} See text in section [3|for
details.

Let USV'T be the svd of BY By. Then wy and ws are the it" columns of U and V' respectively, and

vl'vy is the i*" diagonal element of S if vi and vy are the it" principal vectors of Sy and Ss. Thus,

T = U)T(USVT'U}Q — S”(U)l)

=wT(S;(U); — Si(U);) =0 O 3)

Geometrically, this theorem says that after projection on the plane (P) defined by any one of the
principal vector pairs between subspaces S7 and S2, both the entire subspaces collapse to just two
lines such that points from S; lie along one line while points from S5 lie along the second line.
Further, the angle that separates these lines is equal to the angle between the i*" principal vector pair

between S and S if the span of the i" principal vector pair is used as P.

We apply theorem [I| on a three dimensional example as shown in figure[I] In figure[I](a), the first
subspace (y-z plane) is denoted by red color while the second subspace is the black line in x-y axis.
Notice that for this setting, the x-y plane (denoted by blue color) is in the span of the 1! (and only)
principal vector pair between the two subspaces. After projection of both the entire subspaces onto
the x-y plane, we get two lines (figure|1|(b)) as stated in the theorem.

Finally, we now show that for any K class dataset with independent subspace structure, 2K projec-
tion vectors are sufficient for structure preservation.

Theorem 2 Let X = {z}}Y, be a K class dataset in R"™ with Independent Subspace structure. Let
P = [Py ... Px] € R"™2EK be a projection matrix for X such that the columns of the matrix P}, €
R"™*2 consists of orthonormal vectors in the span of any principal vector pair between subspaces
Sk and ) itk S;. Then the Independent Subspace structure of the dataset X is preserved after
projection on the 2K vectors in P.

Before stating the proof of this theorem, we first state lemma|[I| which we will use later in our proof.
This lemma states that if two vectors are separated by a non-zero angle, then after augmenting these
vectors with any arbitrary vectors, the new vectors remain separated by some non-zero angle as
well. This straightforward idea will help us extend the two subspace case in theorem [I] to multiple
subspaces.

Lemma 1 Let x4, y1 be any two fixed vectors of same dimensionality with respect to each other such
that —

T
m =y < 1. Let x5, y2 be any two arbitrary vectors of same finite dimensionality with

T
respect to each other such that % = 9 < 1. Then there exists a constant 7 < max(v1,¥2)

T,/

such that vectors x' = [x1;x2) and y' = [y1;y=| are also separated such that m < 4. Here

the equality in 4 < max(7y1,72) only holds when 1 = ~s.



Proof:

Ty afytagy
I/ ll2lly'll2 [l ll2]ly[l2
_ llzall2llyslle + vellzaflallgellz
- / /
2121y ll2
< max(v1,v2) ”leQHyl”/Q a ||,x2”2Hy2H2 (equality only holds when v, = 73)
2" 2]y ll2
Expanding the denominator, we get,
la'llollll2 = /a3 + a3yl 13 + 9213 )
Thus,
213115113 = llz1[31y1ll3 + llz2l3lyel3 + I3 ly2l3 + le2l3lly 3 (6)
On the other hand, squaring the numerator yields,
(lz1llollyrlla + lz2ll2lly2ll2)® = lz1l31y1 13 + lz2l3 213+ 2llz1 [y ll2llz2]l2lly2llo (7)
Finally, since arithmetic mean is at least equal to geometric mean, we have that
lz1l3ly2l3 + 231113 > 2llzllzllyillzllz2l2]lye ]l ®)

llz1]l2llyall2+lz2]l2|ly2 |2
ll="l2[ly" [I2

which implies < 1, thus proving the claim. U]

Proof of theorem 2k

For the proof of theorem El it suffices to show that data vectors from subspaces Sy, and itk S

(for any k € {1... K}) are separated by margin less than 1 after projection using P. Let x and y
be any vectors in Sy, and itk S; respectively and the columns of the matrix Py, be in the span of

the it" (say) principal vector pair between these subspaces. Using theorem the projected vectors
Pl'z and Pl'y are separated by an angle equal to the the angle between the it" principal vector
pair between Sy, and itk S;. Let the cosine of this angle be ~y. Then, using lemmall| the added

dimensions in the vectors Pg x and Pg y to form the vectors PTx and PTy are also separated by
some margin ¥y < 1. As the same argument holds for vectors from all classes, the Independent
Subspace Structure of the dataset remains preserved after projection. [

For any two disjoint subspaces, theorem [l tells us that there is a two dimensional plane in which
the entire projected subspaces form two lines. It can be argued that after adding arbitrary valued
finite dimensions to the basis of this plane, the two projected subspaces will also remain disjoint
(see proof of theorem [2). Theorem [2]simply applies this argument to each subspace and the sum of
the remaining subspaces one at a time. Thus for K subspaces, we get 2K projection vectors.

Finally, our approach projects data to 2K dimensions which could be a concern if the original
feature dimension itself is less than 2K. However, since we are only concerned with data that has
underlying independent subspace assumption, notice that the feature dimension must be at least
K. This is because each class must lie on at least 1 dimension which is linearly independent of
others. However, this is too strict an assumption and it is straight forward to see that if we relax this
assumption to 2 dimensions for each class, the feature dimensions are already at 2.

3.1 Implementation

A naive approach to finding projection vectors (say for a binary class case) would be to compute
the SVD of the matrix X 1T X5, where the columns of X; and X5 contain vectors from class 1 and
class 2 respectively. For large datasets this would not only be computationally expensive but also
be incapable of handling noise. Thus, even though theorem [2] guarantees the structure preservation
of the dataset X after projection using P as specified, this does not solve the problem of dimen-
sionality reduction. The reason is that given a labeled dataset sampled from a union of independent
subspaces, we do not have any information about the basis or even the dimensionality of the un-
derlying subspaces. Under these circumstances, constructing the projection matrix P as specified



Algorithm 1 Computation of projection matrix P
INPUT: X, K )\, iterman
for k=1 to K do -
w} <+ random vector in RV
while iter < iterp,,, or -y not converged do

wi < arg miny,, || Xpwy — ‘inwsz + Aljwy |[?

|X’kw§|\2
. X o
w}h + arg mmm“nx,ﬁTﬂ\g — Xpwo|? + Mwa |

v (Xpw!) T (Xpw3) /(| Xpwi |2 Xews]|2)
end while ~
end for
P* <+ Orthonormalized vectors in [P ... Pg]
OUTPUT: P*

*
X

in theorem [2] itself becomes a problem. To solve this problem, we propose an algorithm that tries
to find the underlying principal vector pair between subspaces Sy and > itk S; (for k = 1to K)
given the labeled dataset X . The assumption behind this attempt is that samples from each subspace
(class) are not heavily corrupted and that the underlying subspaces are independent.

Notice that we are not specifically interested in a particular principal vector pair between any two
subspaces for the computation of the projection matrix. This is because we have assumed indepen-
dent subspaces and so each principal vector pair is separated by some margin v < 1. Hence we
need an algorithm that computes any arbitrary principal vector pair, given data from two indepen-
dent subspaces. These vectors can then be used to form one of the K submatrices in P as specified
in theorem [2]. For computing the submatrix Py, we need to find a principal vector pair between
subspaces Sy and > itk S;. In terms of dataset X, we estimate the vector pair using data in X,

and X, where X, := X \ {X}}. We repeat this process for each class to finally form the entire
matrix P*. Our approach is stated in algorithm[I} For each class k, the idea is to start with a random
vector in the span of X, and find the vector in X}, closest to this vector. Then fix this vector and
search of the closest vector in Xj. Repeating this process till the convergence of the cosine between
these 2 vectors leads to a principal vector pair. In order to estimate the closest vector from oppo-
site subspace, we have used a quadratic program in 1| that minimizes the reconstruction error of the
fixed vector (of one subspace) using vectors from the opposite subspace. The regularization in the
optimization is to handle noise in data.

3.2 Justification

The definition [I] for margin y between two subspaces S7 and S, can be equivalently expressed as

1
1—~ = min §|\Blw1 — Bown||? s.t. |Biwi|? =1, ||Baws|* = 1 9)

w1, w2

where the columns of B; € R"*% and By € R™%% are the basis of the subspaces S7 and So
respectively such that BT By and BT B, are both identity matrices.

Proposition 1 Let B, € R™% and By € R"*% be the basis of two disjoint subspaces S, and
Sa. Then for any principal vector pair (u;,v;) between the subspaces Sy and Ss, the corresponding
vector pair (w1 € R ,wy € R®2), s.t. w; = Biw; and v; = Bows, is a local minima to the
objective in equation ({9).

Proof: The Lagrangian function for the above objective is:

1 1
L(wr,wa,m) = §w1TB1TBlw1+§w2TBzTBzw2—w1TB1TB2w2+771(||Blw1||2—1)+7I2(||Bzw2|\2—1)
(10)
Then setting the gradient w.r.t. w1 to zero we get

Vi, £ = (14 2m)w; — BF Bywy =0 (11)



Let USV'T be the SVD of BT By and w and w be the it" columns of U and V' respectively. Then
equation becomes

Vi, £=(1+2n)w; —USVTw, (12)
= (1 +2m)w; — Sijwy =0

Thus the gradient w.r.t. w1 is zero whenn, = %(Sii —1). Similarly, it can be shown that the gradient
W.EL. Wy s zero when 1o = %(Sl — 1). Thus the gradient of the Lagrangian L is 0 w.r.t. both w;
and wa for every corresponding principal vector pair. Thus vector pair (w1, ws) corresponding to
any of the principal vector pairs between subspaces Sy and Ss is a local minima to the objective[9}

Since (wy,ws) corresponding to any principal vector pair between two disjoint subspaces form a
local minima to the objective given by equation (9), one can alternatively minimize equation (9)
w.rt. w; and we and reach one of the local minima. Thus, by assuming independent subspace
structure for all the K classes in algorithm [I|and setting A to zero, it is straight forward to see that
the algorithm yields a projection matrix that satisfies the criteria specified by theorem 2]

Finally, real world data do not strictly satisfy the independent subspace assumption in general and
even a slight corruption in data may easily lead to the violation of this independence. In order to
tackle this problem, we add a regularization (A > 0) term while solving for the principal vector
pair in algorithm [I| If we assume that the corruption is not heavy, reconstructing a sample using
vectors belonging to another subspace would require a large coefficient over those vectors. The
regularization avoids reconstructing data from one class using vectors from another class that are
slightly corrupted by assigning such vectors small coefficients.

3.3 Complexity

Solving algorithm [T|requires solving an unconstrained quadratic program within a while-loop. As-
sume that we run this while loop for T iterations and that we use conjugate gradient descent to solve
the quadratic program in each iteration. Also, it is known that for any matrix A € R%*? and vector
b € R?, conjugate gradient applied to a problem of the form

arg min| Az — b||? (13)

takes time O(ab\/lz), where /C is the condition number of AT A. Thus it is straight forward to
see that the time required to compute the projection matrix for a K class problem in our case is
O(KTnN \/IE), where n is the dimensionality of feature space, N is the total number of samples
and K is the condition number of the matrix (X Xj + AZ). Here Z is the identity matrix. Note
that the quadratic program (bottleneck of our algorithm) can also be solved using optimization tech-
niques such as Stochastic Co-ordinate Descent or Stochastic Gradient Descent in case of very large
dimensionality or dataset size and hence our algorithm is scalable.

4 Empirical Analysis

In this section, we present empirical evidence to support our theoretical analysis of our subspace
learning approach. For real world data, we use the following datasets:

1. Extended Yale dataset B [2|]: It consists of ~ 2414 frontal face images of 38 individuals (K = 38)
with 64 images per person. These images were taken under constrained but varying illumination
conditions.

2. AR dataset [9]]: This dataset consists of more than 4000 frontal face images of 126 individuals
with 26 images per person. These images were taken under varying illumination, expression and
facial disguise. For our experiments, similar to [[14], we use images from 100 individuals (K =
100) with 50 males and 50 females. We further use only 14 images per class which correspond to
illumination and expression changes. This corresponds to 7 images from Session 1 and rest 7 from
Session 2.

3. PIE dataset [11|]: The pose, illumination, and expression (PIE) database is a subset of CMU PIE
dataset consisting of 11, 554 images of 68 people (K = 68).
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Figure 4: Multi-class separation after projection using proposed approach for different
datasets. See section [£.1.2] for details.

We crop all the images to 32 x 32, and concatenate all the pixel intensity to form our feature vectors.
Further, we normalize all data vectors to have unit £2 norm.

4.1 Qualitative Analysis
4.1.1 Two Subspaces-Two Lines

We test both the claim of theorem [I] and the quality of approximation achieved by algorithm [I] in
this section. We perform these tests on both synthetic and real data.

1. Synthetic Data: We generate two random subspaces in R'%%Y of dimensionality 20 and 30 (notice

that these subspaces will be independent with probability 1). We randomly generate 100 data vectors
from each subspace and normalize them to have unit length. We then compute the 15¢ principal
vector pair between the two subspaces using their basis vectors by performing SVD of B B,
where B; and B- are the basis of the two subspaces. We orthonormalize the vector pair to form the
projection matrix P,. Next, we use the labeled dataset of 200 points generated to form the projection
matrix P, by applying algorithm[I] The entire dataset of 200 points is then projected onto P, and P,
separately and plotted in figure[2] The green and red points denote data from either subspace. The
results not only substantiate our claim in theorem [I] but also suggest that the proposed algorithm for
estimating the projection matrix is a good approximation.

2. Real Data: Here we use Extended Yale dataset B for analysis. Since we are interested in pro-
jection of two class data in this experimental setup, we randomly choose 4 different pairs of classes
from the dataset and use the labeled data from each pair to generate the two dimensional projection
matrix (for that pair) using algorithm[I] The resulting projected data from the 4 pairs can be seen in



figure 3] As is evident from the figure, the projected two class data for each pair approximately lie
along two different lines.

4.1.2 Multi-class separability

We analyze the separation between the K classes of a given K -class dataset after dimensionality
reduction. First we compute the projection matrix for that dataset using our approach and project the
data. Second, we compute the top principal vector for each class separately from the projected data.
This gives us K vectors. Let the columns of the matrix Z € R?5£*X contain these vectors. Then
in order to visualize inter-class separability, we simply take the dot product of the matrix Z with
itself, i.e. Z7 Z. Figure shows this visualization for the three face datasets. The diagonal elements
represent self-dot product; thus the value is 1 (white). The off-diagonal elements represent inter-
class dot product and these values are consistently small (dark) for all the three datasets reflecting
between class separability.

4.2 Quantitative Analysis

In order to evaluate theorem |2} we perform a classification experiment on all the three real world
datasets mentioned above after projecting the data vectors using different dimensionality reduction
techniques. We compare our quantitative results against PCA, Linear discriminant analysis (LDA),
Regularized LDA and Random Projections (RP)|'} We make use of sparse coding [14] for classifi-
cation.

For Extended Yale dataset B, we use all 38 classes for evaluation with 50% — 50% train-test split
and 70% — 30% train-test split Since our method is randomized, we perform 50 runs of comput-
ing the projection matrix using algorithm [I] and report the mean accuracy with standard deviation.
Similarly for RP, we generate 50 different random matrices and then perform classification. Since
all other methods are deterministic, there is no need for multiple runs.

Table 1: Classification Accuracy on Extended Yale dataset B with 50%-50% train-test split.

See section |4.2] for details.
Method Ours PCA | LDA | Reg-LDA RP

dim 76 76 37 37 76
acc 98.06 + 0.18 | 92.54 | 83.68 95.77 93.78 £0.48

Table 2: Classification Accuracy on Extended Yale dataset B with 70%-30% train-test split.

See section for details.
Method Ours PCA | LDA | Reg-LDA RP

dim 76 76 37 37 76
acc 99.45 £ 0.20 | 93.98 | 93.85 97.47 94.72 £ 0.66

Table 3: Classification Accuracy on AR dataset. See section[d.2]for details.
Method Ours PCA | LDA | Reg-LDA RP

dim 200 200 99 99 200

acc 92.18 + 0.08 | 85.00 - 88.71 84.76 £ 1.36

Table 4: Classification Accuracy on a subset of CMU PIE dataset. See section 4.2|for details.
Method Ours PCA | LDA | Reg-LDA RP

dim 136 136 67 67 136

acc 93.65 £ 0.08 | 87.76 | 86.71 92.59 90.46 £ 0.93

Table 5: Classification Accuracy on a subset of CMU PIE dataset. See section 4.2|for details.
Method Ours PCA | LDA | Reg-LDA RP

dim 20 20 9 9 20

acc 99.07 £ 0.09 | 97.06 | 95.88 97.25 95.03 £ 0.41

For AR dataset, we take the 7 images from Session 1 for training and the 7 images from Session 2
for testing. The results are shown in table[3] The result using LDA is not reported because we found

"We also used LPP (Locality Preserving Projections) [3], NPE (Neighborhood Preserving Embedding) [4],
and Laplacian Eigenmaps [1] for dimensionality reduction on Extended Yale B dataset. However, because
the best performing of these reduction techniques yielded a result of only 73% compared to the close to 98%
accuracy from our approach, we do not report results from these methods.



that the summed within class covariance was degenerate and hence LDA was not applicable. It can
be clearly seen that our approach significantly outperforms other dimensionality reduction methods.

Finally for PIE dataset, we perform experiments on two different subsets. First, we take all the
68 classes and for each class, we randomly choose 25 images for training and 25 for testing. The
performance for this subset is shown in table EI Second, we take only the first 10 classes of the
dataset and of all the 170 images per class, we randomly split the data into 70% — 30% train-test set.
The performance for this subset is shown in table[5]

Evidently, our approach consistently yields the best performance on all the three datasets compared
to other dimensionality reduction methods.

5 Conclusion

We proposed a theoretical analysis on the preservation of independence between multiple subspaces.
We show that for K independent subspaces, 2K projection vectors are sufficient for independence
preservation (theorem [2). This result is motivated from our observation that for any two disjoint
subspaces of arbitrary dimensionality, there exists a two dimensional plane such that after projec-
tion, the entire subspaces collapse to just two lines (theorem [I). Resulting from this analysis, we
proposed an efficient iterative algorithm (T)) that tries to exploit these properties for learning a projec-
tion matrix for dimensionality reduction that preserves independence between multiple subspaces.
Our empirical results on three real world datasets yield state-of-the-art results compared to popular
dimensionality reduction methods.
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