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Abstract
Learning the principal eigenfunctions of an in-
tegral operator defined by a kernel and a data
distribution is at the core of many machine learn-
ing problems. Traditional nonparametric solu-
tions based on the Nyström formula suffer from
scalability issues. Recent work has resorted to
a parametric approach, i.e., training neural net-
works to approximate the eigenfunctions. How-
ever, the existing method relies on an expen-
sive orthogonalization step and is difficult to im-
plement. We show that these problems can be
fixed by using a new series of objective func-
tions that generalizes the EigenGame (Gemp
et al., 2020) to function space. We test our
method on a variety of supervised and unsuper-
vised learning problems and show it provides ac-
curate approximations to the eigenfunctions of
polynomial, radial basis, neural network Gaus-
sian process, and neural tangent kernels. Fi-
nally, we demonstrate our method can scale up
linearised Laplace approximation of deep neural
networks to modern image classification datasets
through approximating the Gauss-Newton matrix.
Code is available at https://github.com/
thudzj/neuraleigenfunction.

1. Introduction
Kernel methods (Muller et al., 2001; Schölkopf et al., 2002)
are among the most important and fundamental tools in
machine learning (ML) for processing nonlinear data. Like
most nonparametric methods, kernel methods have limited
applicability in large-scale scenarios, and kernel approxima-
tion methods like Random Fourier features (RFFs) (Rahimi
& Recht, 2007) and Nyström method (Nyström, 1930) are
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κ(x, x′ ) ≈ ̂μ1 ψ̂1(x) ψ̂1(x′ ) + ̂μ2 ψ̂2(x) ψ̂2(x′ ) + . . . + ̂μk ψ̂k(x) ψ̂k(x′ )
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Figure 1: NeuralEF embeds the structures inside a kernel into
an ensemble of NNs under the principle of eigendecomposition.
NeuralEF defines a new axis system for data, and is capable of
recovering the kernel according to Mercer’s theorem.

frequently introduced as a remedy.

Even so, kernel methods still lag behind in handling complex
high-dimensional data as classic local kernels suffer from
the curse of dimensionality (Bengio et al., 2005). New
developments such as neural network Gaussian process (NN-
GP) kernels (Lee et al., 2017) and neural tangent kernels
(NTKs) (Jacot et al., 2018) mitigate this issue by leveraging
the inductive bias of neural networks (NNs). Yet, these
modern kernels are expensive to evaluate and have poor
compatibility with standard kernel approximation methods—
an accurate approximation with RFFs requires many NN
forward passes to construct an adequate number of features,
while Nyström method involves costly kernel evaluation in
the test phase.

We present a new kernel approximation method for address-
ing these challenges. It relies on deconstructing a kernel
as a spectral series and approximating the eigenfunctions
with neural networks. Because such a method can identify
the principal components, we need much less NN forward
passes than RFFs to accurately approximate NN-GP kernels
and NTKs. Moreover, it gives rise to an unsupervised repre-
sentation learning paradigm, where the pairwise similarity
captured by kernels is embedded into NNs. The learned
neural eigenfunctions can serve as plug-and-play feature
extractors and be finetuned for downstream applications.

Training neural networks to approximate eigenfunctions is a
difficult task due to the orthonormality constraints. Spectral
Inference Networks (SpIN) (Pfau et al., 2018) made the
first attempt by formulating this as an optimization problem.
Nevertheless, SpIN’s objective function only allows recover-
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Figure 2: Estimate the top-10 eigenfunctions {ψ̂j}10j=1 (we plot only the top-3 for visualization) of the polynomial kernel κ(x, x′) =

(x>x′ + 1.5)4 (Left) and the RBF kernel κ(x, x′) = exp(−‖x− x′‖2/2) (Middle) with the Nyström method (the ground truth), SpIN,
and NeuralEF (our) given 64 data points. The results obtained with larger sample size are deferred to Appendix C.1. We also plot how the
total training time varies w.r.t. sample size for the polynomial kernel (Right). The time complexity of Nyström method grows cubically
with the sample size due to eigendecomposition. Both NeuralEF and SpIN consume nearly constant training time for different sample
sizes, but SpIN produces less accurate approximations and is less efficient.

ing the subspace spanned by the top eigenfunctions1 instead
of the eigenfunctions themselves. To recover individual
eigenfunctions, they resort to an expensive orthogonaliza-
tion step that requires Cholesky decomposition and tracking
the NN Jacobian matrix during training. As a result, SpIN
suffer from inefficiency issues and non-trivial implementa-
tion challenges.

We resolve the problems of SpIN with a new formulation
of kernel eigendecomposition as simultaneously solving
a series of asymmetric optimization problems. Our work
is inspired from Gemp et al. (2020) which uses a related
objective to cast principled component analysis as a game,
and can be viewed as an extension of it to the function space.

With this, we can naturally incorporate k NNs as function
approximators to the top-k eigenfunctions of the kernel, and
train them under a more amenable objective than SpIN. We
leverage stochastic optimization strategies to comfortably
train these neural eigenfunctions in the big data regime, and
develop a novel NN layer to make the neural eigenfunctions
fulfill certain constraints. We dub our method as neural
eigenfunctions, or NeuralEF for short.

After training, NeuralEF approximates the kernel evaluation
on novel data points with the outputs of the k NNs (see
Figure 1). This brings great benefits when coping with
modern kernels whose evaluation incurs heavy burden like
NN-GP kernels and NTKs. Besides, NeuralEF forms a set
of new orthogonal bases for the data and is compatible with
various pattern recognition algorithms.

We empirically evaluate NeuralEF in a variety of scenarios.
We first evidence that NeuralEF can perform as well as the

1By saying top-k eigenpairs or eigenfunctions, we mean those
associated with the top-k eigenvalues. Besides, we assume they are
ranked in the descending order of the corresponding eigenvalues
without loss of generality.

Nyström method and beat SpIN when handling classic ker-
nels, yet with more sustainable resource consumption (see
Figure 2). We then show that NeuralEF can learn the infor-
mative structures in NN-GP kernels and NTKs to achieve
effective classification and clustering. To demonstrate the
scalability of NeuralEF, we further conduct a large-scale
study to scale up linearised Laplace approximation where
the kernel matrix has size 500, 000× 500, 000.

2. Background
2.1. Kernel Methods

Kernel methods project data into a high-dimensional feature
space H to enable linear manipulation of nonlinear data.
The subtlety is that we can leverage the “kernel trick” to
bypass the need of specifyingH explicitly —given a positive
definite kernel κ : X × X → R, there exists a feature map
ϕ : X → H such that κ(x,x′) = 〈ϕ(x), ϕ(x′)〉H.

There is a rich family of kernels. Classic kernels include
the linear kernel, the polynomial kernel, the radial basis
function (RBF) kernel, etc. However, they may easily fail
when processing real-world data like images and texts due
to inadequate expressive power and the curse of dimension-
ality. Thereby, various modern kernels which encapsulate
the inductive biases of NN architectures have been devel-
oped (Wilson et al., 2016). The NN-GP kernels (Neal, 1996;
Lee et al., 2017; Garriga-Alonso et al., 2018; Novak et al.,
2018) and NTKs (Jacot et al., 2018; Arora et al., 2019; Du
et al., 2019) are two representative modern matrix-valued
kernels, as defined below:

κNN-GP(x,x′) = Eθ∼p(θ)g(x,θ)g(x′,θ)>, (1)

κNTK(x,x′) = Eθ∼p(θ)∂θg(x,θ)∂θg(x′,θ)>, (2)

where g(·,θ) : X → RNout denotes a function represented
by an NN with weights θ, and p(θ) is a layerwise isotropic
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Gaussian. When the NN specifying g has infinite width,
κNN-GP and κNTK have analytical formulae and can be com-
puted recursively due to the hierarchical nature of NNs. The
NTKs are valuable for the theoretical analysis of neural
networks, but are used much less frequently in practice than
the empirical NTKs defined below:

κNTK(x,x′) = ∂θg(x,θ)∂θg(x′,θ)>. (3)

If there is no misleading, we refer to the empirical NTKs as
NTKs in the following.

Despite the non-parametric flexibility, kernel methods suffer
from inefficiency issues – the involved computations grow
at least quadratically and usually cubically w.r.t. data size.
Moreover, for NN-GP kernels and NTKs, writing down their
detailed mathematical formulae is non-trivial (Arora et al.,
2019) and evaluating them with recursion is both time and
memory consuming.

2.2. Kernel Approximation

An idea to scale up kernel methods is to approximate the
kernel with the inner product of some explicit vector repre-
sentations of the data, i.e., κ(x,x′) ≈ ν(x)>ν(x′), where
ν : X → Rk denotes a mapping function. Random Fourier
features (RFFs) (Rahimi & Recht, 2007; 2008; Yu et al.,
2016; Munkhoeva et al., 2018; Francis & Raimond, 2021)
and Nyström method (Nyström, 1930; Williams & Seeger,
2001) are two popular approaches in this spirit. RFFs can
easily handle shift-invariant kernels, but may face obstacles
when being applied to the others. Besides, RFFs usually
entail using a relatively large k.

Alternatively, Nyström method finds the eigenfunctions for
kernel approximation according to Mercer’s theorem:

κ(x,x′) =
∑
j≥1

µjψj(x)ψj(x
′), (4)

where ψj ∈ L2(X , q)2 denote the eigenfunctions of the
kernel κ(x,x′) w.r.t. the probability measure q, and µj ≥ 0
refer to the corresponding eigenvalues.

Typically, the eigenfunctions obey the following equation:
ˆ
κ(x,x′)ψj(x

′)q(x′)dx′ = µjψj(x), ∀j ≥ 1. (5)

And they are demanded to be orthonormal under q:
ˆ
ψi(x)ψj(x)q(x)dx = 1[i = j], ∀i, j ≥ 1. (6)

Given the access to a training set of i.i.d. samples Xtr =
{x1, ...,xN} from q, the Nyström method approximates the

2L2(X , q) is the space containing all square-integrable func-
tions w.r.t. q.

integration in Equation (5) by Monte Carlo (MC) estimation,
which gives rise to

1

N

N∑
n′=1

κ(x,xn′)ψj(xn′) = µjψj(x), ∀j ≥ 1. (7)

It is easy to see that we can get the approximate top-k eigen-
pairs {(µ̂j , [ψ̂j(x1), ..., ψ̂j(xN )]>)}kj=1 of the kernel κ by
eigendecomposing the kernel matrix κ(Xtr,Xtr) ∈ RN×N .
Nyström method plugs them back into Equation (7) for
out-of-sample extension:

ψ̂j(x) =
1

Nµ̂j

N∑
n′=1

κ(x,xn′)ψ̂j(xn′), j ∈ [k]. (8)

[k] denotes set of integers from 1 to k. Then, we have
κ(x,x′) ≈

∑k
j=1 µ̂jψ̂j(x)ψ̂j(x

′).

Unlike RFFs, Nyström method can be applied to approx-
imate any positive-definite kernel. Yet, it is non-trivial to
scale it up. On the one hand, the matrix eigendecomposition
is costly for even medium sized training data. On the other
hand, as shown in Equation (8), evaluating ψ̂j on a new
datum entails evaluating κ for N times, which is unafford-
able when coping with the modern kernels specified by deep
architectures.

2.3. Spectral Inference Networks (SpIN)

Kernel approximation with NNs has the potential to amelio-
rate these pathologies due to their universal approximation
capability and parametric nature. SpIN (Pfau et al., 2018)
is a pioneering work in this line. In a similar spirit to the
Nyström method, SpIN recovers the top eigenfunctions for
kernel approximation, yet with NNs. Concretely, SpIN intro-
duces a vector-valued NN function Ψ(·,w) : X → Rk and
train it under the following eigendecomposition principle:

max
w

Tr
(¨

Ψ(x,w)Ψ(x′,w)>κ(x,x′)q(x)q(x′)dxdx′
)

s.t.:
ˆ

Ψ(x,w)Ψ(x,w)>q(x)dx = Ik, (9)

where Tr computes the trace of a matrix and Ik denotes the
identity matrix of size k × k; q is the empirical distribution
of data.

However, the above objective makes Ψ recover the subspace
spanned by the top-k eigenfunctions rather than the top-
k eigenfunctions themselves (Pfau et al., 2018). Such a
difference is subtle yet significant. In the extreme case of
finding the top-N eigenfunctions given a training set Xtr of
size N , Equation (9) becomes:

max
w

Tr
(

Ψ(Xtr,w)>κ(Xtr,Xtr)Ψ(Xtr,w)
)

s.t.: Ψ(Xtr,w) ∈ RN×N , Ψ(Xtr,w)>Ψ(Xtr,w) = IN ,
(10)



NeuralEF: Deconstructing Kernels by Deep Neural Networks

which equals to maxw Tr
(
Ψ(Xtr,w)Ψ(Xtr,w)>κ(Xtr,Xtr)

)
=

Tr (κ(Xtr,Xtr)). As the last term shows, the objective is
independent of w, thus it cannot be used to learn all N
eigenfunctions.

To fix this issue, SpIN relies on a gradient masking trick
to ensure that Ψ converges to ordered eigenfunctions. This
solution is expensive as it involves a Cholesky decomposi-
tion per training iteration. Besides, to debias the stochastic
optimization, SpIN involves tracking the exponential mov-
ing average (EMA) of the Jacobian ∂wΣw. As a result,
SpIN suffers from inefficiency issues (see Figure 2) and
non-trivial implementation challenges. The explicit manipu-
lation of Jacobian also precludes SpIN from utilizing very
deep architectures.

3. Methodology
3.1. Eigendecomposition as Maximization Problems

NeuralEF builds upon a new representation of the eigenpairs
of the kernel, which leads to a more amenable learning prin-
ciple for kernel approximation than those of the Nyström
method and SpIN:

Theorem 1 (Proof in Appendix A.1). The eigenpairs of the
kernel κ(x,x′) can be recovered by simultaneously solving
the following asymmetric maximization problems:

max
ψ̂j

Rjj s.t.:Cj = 1, Rij = 0, ∀j ≥ 1, i ∈ [j − 1], (11)

where ψ̂j ∈ L2(X , q) represent the introduced approximate
eigenfunctions, and

Rij :=

¨
ψ̂i(x)κ(x,x′)ψ̂j(x

′)q(x′)q(x)dx′dx, (12)

Cj :=

ˆ
ψ̂j(x)ψ̂j(x)q(x)dx. (13)

(Rjj , ψ̂j) will converge to the eigenpair associated with j-th
largest eigenvalue of κ.

Intuitively, Cj = 1 guarantees the normalization of ψ̂j .
Rij = 0 (∀i < j) ensures that ψ̂j and ψ̂i are orthogonal,
and induces a hierarchy among the problems – the solu-
tions to the latter problems are restricted in the orthogonal
complement of the subspace spanned by the solutions to
the former ones. This way, we bypass the reliance on the
troublesome Cholesky decomposition, gradient masking,
and manipulation of Jacobian as required by SpIN.

Conceptually, Rjj can be thought of as an extension of
the Rayleigh quotient. It is then interesting to see that our
optimization objective makes an analogy with that of the
EigenGame (Gemp et al., 2020) for finite-dimensional sym-
metric matrices. We clarify that our method is a general-
ization of EigenGame – by setting κ as the linear kernel

κ(x,x′) = x>x′, our objective forms a function-space
generalization of that in EigenGame.

In the seek of tractability, we slack the constraints on or-
thogonality in Equation (11) as penalties and solve:

max
ψ̂j

Rjj −
j−1∑
i=1

R2
ij

Rii
s.t.:Cj = 1, ∀j ∈ [k], (14)

where we set the penalty coefficients as 1
R11

, ..., 1
R(j−1)(j−1)

to make the two kinds of forces in the objective on a simi-
lar scale, as suggested by EigenGame (Gemp et al., 2020).
We consider only the top-k eigenpairs to strike a balance
between efficiency and effectiveness. k ∈ N+ is a tun-
able hyper-parameter. We will exposit how to handle the
normalization constraints later.

Ideally, by Theorem 1, ψ̂j would converge to the ground
truth eigenfunction ψj , but in practice the exact convergence
may be unattainable. Given this situation, we provide an
analysis in Appendix A.2 to demonstrate that small errors in
the solutions to the former problems would not significantly
bias the solutions to the latter problems.

3.2. Neural Networks as Eigenfunctions

We opt to optimize over the parametric function class de-
fined by NNs to scale up our method to large data. Con-
cretely, we incorporate k NNs with the same architecture
but dedicated weights into the optimization in Equation (14),
i.e., ψ̂j(·) = ψ̂(·,wj) : X → R, j ∈ [k].

Mini-batch training We learn the parameters via mini-
batch training. Given X = {xb}Bb=1 ⊆ Xtr at per iteration,
we approximate Rij by MC integration:

R̃ij =

B∑
b=1

B∑
b′=1

1

B2
ψ̂i(xb)κ(xb,xb′)ψ̂j(xb′)

=
1

B2
ψ̂X
i

>
κX,Xψ̂X

j ,

(15)

where ψ̂X
j = [ψ̂(x1,wj), ..., ψ̂(xB ,wj)]

> ∈ RB refer to
the concatenation of scalar outputs and κX,X = κ(X,X) ∈
RB×B is the kernel matrix associated with the mini-batch
of data. We track R̃jj via EMA to get an estimate of the
j-th largest eigenvalue µj .

L2 Batch normalization (L2BN) Then we settle the nor-
malization constraints. When doing mini-batch training,
we have Cj ≈ 1

B

∑B
b=1 ψ̂(xb,wj)ψ̂(xb,wj). To make Cj

equal to 1, we should guarantee the outcomes of each neural
eigenfunction to have an L2 norm equal to

√
B. To realise

this, we append an L2 batch normalization (L2BN) layer at
the end of every involved NN, whose form is:

hout
b =

hin
b

σ
, with σ =

√√√√ 1

B

B∑
b=1

hin
b

2
, b ∈ [B]. (16)
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Algorithm 1 Find the top-k eigenpairs of a kernel by NeuralEF

1: Input: Training data Xtr, kernel κ, batch size B.
2: Initialize NNs ψ̂j(·) = ψ̂(·,wj) and scalars µ̂j , j ∈ [k];
3: Compute the kernel matrix κXtr,Xtr = κ(Xtr,Xtr);
4: for iteration do
5: Draw a mini-batch X ⊆ Xtr; retrieve κX,X from κXtr,Xtr ;
6: Do forward propagation ψ̂X

j = ψ̂(X,wj), j ∈ [k];
7: µ̂j ← EMA(µ̂j , 1

B2 ψ̂
X
j

>
κX,Xψ̂X

j ), j ∈ [k];
8: Compute ∇wj `, j ∈ [k] by Equation (18) and do SGD;
9: end for

{hin
b |hin

b ∈ R}Bb=1 and {hout
b |hout

b ∈ R}Bb=1 denote the batched
input and output. We apply the transformation in Equa-
tion (16) during training, while recording the EMA of σ
for testing. Thereby, we sidestep the barrier of optimizing
under explicit normalization constraints. Arguably, L2BN
also ensures the neural eigenfunctions are square-integrable
w.r.t. q.

The training loss and its gradients Given these setups, we
arrive at the following training loss:

min
w1,...,wk

` =− 1

B2

k∑
j=1

(
ψ̂X
j

>
κX,Xψ̂X

j

−
j−1∑
i=1

(
sg(ψ̂X

i

>
)κX,Xψ̂X

j

)2
sg
(
ψ̂X
i

>
κX,Xψ̂X

i

) )
,

(17)

where sg denotes the stop gradient operation. The
gradients of ` w.r.t. wj are:

∇wj ` = − 2
B2κ

X,X

(
ψ̂X
j −

∑j−1
i=1

ψ̂X
i
>
κX,Xψ̂X

j

ψ̂X
i
>
κX,Xψ̂X

i

ψ̂X
i

)
· ∂wj ψ̂

X
j .

(18)
In practice, we analytically compute the first part of the
RHS of Equation (18) and then perform vector-Jacobian
product via reverse-mode autodiff.

Extension to matrix-valued kernels So far, we have fig-
ured out the manipulation of scalar kernels, and it is
natural to generalize NeuralEF to handle matrix-valued
kernels, whose outputs are Nout × Nout matrices. In
this regime, a direct solution is to set ψ̂j as NNs with
Nout output neurons and modify the L2BN layer accord-
ingly. Then, we have κX,X ∈ RBNout×BNout and ψ̂X

j =

[ψ̂(x1,wj)
>, ..., ψ̂(xB ,wj)

>]> ∈ RBNout . The loss ` is
still leveraged to guide training.

The algorithm Algorithm 1 shows the training procedure.3

3.3. Learning with NN-GP kernels and NTKs

The Nyström method, SpIN, and NeuralEF all entail com-
puting the kernel matrix on training data κXtr,Xtr , which

3It is not indispensable to precompute the big κXtr,Xtr – we
can instead compute the small κX,X at per training iteration.

may be frustratingly difficult for the NN-GP kernels and
NTKs. As a workaround, we suggest approximately com-
puting κXtr,Xtr with MC estimation based on finitely wide
NNs for NN-GP kernels and NTKs instead of performing
analytical evaluation (see also Novak et al. (2018)).

Specifically, for the NN-GP kernels, it is easy to see:

κXtr,Xtr
NN-GP ≈

1

S

S∑
s

g(Xtr,θs)g(Xtr,θs)
>, (19)

with g(Xtr,θs) ∈ RBNout as the concatenation of the vector-
ized outputs of g and θs ∼ p(θ), s ∈ [S]. In other words,
we evaluate a finitely wide NN g on the training data Xtr
for S times under various weight configurations to calculate
the NN-GP training kernel matrix.

For the NTKs, it is hard to explicitly calculate and store
the Jacobian matrix for modern NNs. Nevertheless, we
notice that if there exists a distribution p(v) satisfying
Ep(v)[vv>] = Idim(θ)

4, then

κXtr,Xtr
NTK = Ev∼p(v) [∂θg(Xtr,θ)v] [∂θg(Xtr,θ)v]> . (20)

By Taylor series expansion, we have ∂θg(Xtr,θ)v ≈
(g(Xtr,θ + εv)− g(Xtr,θ)) /ε with ε as a small scalar
(e.g., 10−5). Combining this with MC estimation, we get

κXtr,Xtr
NTK ≈ 1

S

∑S
s=1

[
g(Xtr,θ+εvs)−g(Xtr,θ)

ε

] [
g(Xtr,θ+εvs)−g(Xtr,θ)

ε

]>
with vs ∼ p(v), s ∈ [S]. Namely, we perform forward
propagation for S+ 1 times with the NN g to approximately
estimate the NTK training kernel matrix. Popular exam-
ples of p(v) fulfilling the above requirement include the
multivariate standard normal N (0, Idim(θ)) and the multi-
variate Rademacher distribution (the uniform distribution
over {±1}dim(θ)). We use the latter in our experiments.

Discussion One may question that now that we can approxi-
mate the NN-GP kernels and NTKs via these random feature
strategies, why do we still need to train a NeuralEF for ker-
nel approximation? We clarify that the sample size S for
these strategies has to be large enough to realize high-fidelity
approximation (e.g., > 1000), which is unaffordable when
testing. In contrast, NeuralEF captures the kernel by only
several top eigenfunctions, which prominently accelerates
the testing (see Section 4.2.2 for empirical evidence).

4. Experiments
We apply NeuralEF to a handful of kernel approximation
scenarios to demonstrate its promise. We set batch size B
as 256 and optimize with an Adam (Kingma & Ba, 2015)
optimizer with 10−3 learning rate unless otherwise stated.
The results of SpIN are obtained based on its official code5.

4dim(θ) denotes the dimensionality of θ.
5https://github.com/deepmind/spectral_

inference_networks.

https://github.com/deepmind/spectral_inference_networks
https://github.com/deepmind/spectral_inference_networks
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Input data Projected by our method Projected by SpIN

(a) “Two-moon” data

Input data Projected by our method Projected by SpIN

(b) “Circles” data

Figure 3: Project 2-D data to the 3-D space by the approximate top-3 eigenfunctions of the MLP-GP kernels. We use a 3-layer MLP with
ReLU activations and a 3-layer MLP with Erf activations to specify the MLP-GP kernels for “two-moon” and “circles” respectively.

The detailed experiment settings are in Appendix B.

4.1. Deconstructing Classic Kernels

At first, we experiment on classic kernels. The baselines
include SpIN and the Nyström method. The latter converges
to the ground truth solutions as the number of samples
increases. We set q(x) as uniform distributions over [−1, 1]
and [−2, 2] for the polynomial kernel κ(x, x′) = (x>x′ +
1.5)4 and the RBF kernel κ(x, x′) = exp(−‖x− x′‖2/2),
respectively. We use k = 10 multilayer perceptrons (MLPs)
of width 32 to instantiate ψ̂j . We set batch size B as the
dataset size N if N < 256 else 256, and train for 2000
iterations.

Figure 2 and Appendix C.1 display the recovered eigenfunc-
tions under various scales of training data. As shown, Neu-
ralEF delivers as good solutions as the Nyström method. Yet,
as more training samples involved, the training overhead
of NeuralEF grows gracefully while the Nyström method
suffers from inefficiency issues. The results also corroborate
the inefficiency issues of SpIN.

4.2. Deconstructing Modern Kernels

We then use NeuralEF to deconstruct the NN-GP kernels
and the NTKs specified by NNs with a scalar output.

4.2.1. THE NN-GP KERNELS

The MLP-GP kernels We start from a simple problem of
processing 1000 2-D data from the “two-moon” or “circles”
dataset. We consider the NN-GP kernel associated with
a 3-layer MLP architecture with ReLU or Erf activation,
referred to as MLP-GP kernel for short. We utilize the
strategies in Section 3.3 to comfortably train NeuralEF. We
are interested in the top-3 eigenfunctions for data visual-
ization. We instantiate the neural eigenfunctions as 3-layer
MLPs of width 32. The optimization settings are matched
with those in Section 4.1. We train SpIN models under the
same settings for a fair comparison. After training, we use
the approximate eigenfunctions to project the data into the
3-D space for visualization. As shown in Figure 3, NeuralEF
yields more appealing outcomes than SpIN.

Table 1: The accuracy of Logistic regression classifiers trained
on the projections of MNIST images given by the top-10 eigen-
functions for various kernels. Note that Nyström method does
not apply to our CNN-GP kernel because no analytical form of
the kernel is known when max-pooling layers are used. We have
tuned the hyper-parameters for the polynomial and RBF kernels
extensively but have not tuned those for the CNN-GP kernel.

Method LR test accuracy

Our method (CNN-GP kernel) 84.98%
Nyström (CNN-GP kernel) N/A
Nyström (polynomial kernel) 78.00%
Nyström (RBF kernel) 77.55%

The CNN-GP kernels We then consider using the NN-GP
kernels specified by convolutional neural networks (CNNs)
(dubbed as CNN-GP kernels) to process MNIST images.
Without loss of generality, we use the following architecture
Conv5-ReLU-MaxPool2-Conv5-ReLU-MaxPool2
-Linear-ReLU-Linear with Conv5 being a 5 × 5
convolution and MaxPool2 being a 2 × 2 max-pooling.
Note that the max-pooling operations make the analytical
kernel evaluation highly nontrivial and no closed-form
solution is known (Novak et al., 2019), thereby preventing
the use of Nyström method. Yet, NeuralEF is applicable
as it does not hinge on kernelized solutions and the kernel
matrix on training data can be efficiently estimated. We use
10 CNNs also with the aforementioned CNN architecture to
set up {ψ̂j}10j=1, and train them on MNIST training images
for 20000 iterations. After that, we use them to project
all MNIST images to the 10-D space. We report the test
accuracy of the (multiclass) Logistic regression (LR) model
trained on these projections in Table 1. We compare the
results with those obtained by polynomial kernel and RBF
kernel using Nyström method. We exclude SpIN from the
comparison due to nontrivial implementation challenges
involved in the application of SpIN to the CNN-GP kernel.

Table 1 shows that the CNN-GP kernels are superior to the
classic kernels for processing images, and our approach
can easily unleash their potential. This also demonstrates
the efficacy of NeuralEF for dealing with out-of-sample
extension. We plot the top-3 dimensions of the projections
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Figure 4: NeuralEF v.s. random features for approximating the NTK of a ResNet-20 binary classifier. The evaluation is performed on
128 CIFAR-10 test images. We explicitly compute the Jacobian matrix to attain the ground truth kernel matrix. Testing a datum with
NeuralEF entails k = 10 NNs forward passes. We use S = 10 MC samples in the random feature approach such that the two methods
have similar overhead.
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Figure 5: A plot of the eigenvalue against the index of the eigen-
value for the NTK corresponding to a ResNet-20 binary classifier.
Our method can approximate the top-10 ground truth eigenvalues
with small errors.

given by NeuralEF in Appendix C.2. We see the projections
form class-conditional clusters, implying that NeuralEF can
learn the discriminative structures in CNN-GP kernels.

4.2.2. THE NTKS

We next experiment on the empirical NTKs corresponding
to practically sized NNs. Without loss of generality, we
train a ResNet-20 classifier (He et al., 2016) to distinguish
the airplane images from the automobile ones from CIFAR-
10 (Krizhevsky et al., 2009), and target the NTK associated
with the trained binary classifier. The MC estimation strat-
egy in Section 3.3 is used to approximate the training kernel
matrix. We train a NeuralEF to find the top-10 eigenpairs of
the NTK. Since analytical evaluation of the NTK of ResNet-
20 is very time-consuming, we do not include the Nyström
method in this experiment.

Figure 5 displays the discovered top-10 eigenvalues and the
ground truth ones, which are estimated by naively eigende-
composing the ground truth training kernel matrix. Besides,
we use the found eigenfunctions to recover the kernel ma-
trix on test data: κ(x,x′) ≈

∑k
j=1 µ̂jψ̂j(x)ψ̂j(x

′). The
recovered matrix and the ground truth calculated from exact

Jacobian are displayed in Figure 4. We also plot the kernel
matrix estimated by the random feature (MC estimation)
strategy in Section 3.3 with S = 10 samples. We can see
that: (i) NeuralEF can approximate the top-10 ground truth
eigenvalues with small errors; (ii) The kernel matrix recov-
ered by NeuralEF suffers from distortion, perhaps due to
that the eigenspectrum of the NTK has a long tail and hence
capturing only the top-10 eigenpairs is insufficient; (iii) Un-
der identical resource consumption, the random feature ap-
proach underperforms NeuralEF in aspect of approximation
quality, reflecting the importance of capturing eigenpairs;
(iv) This NTK has low-rank structures.

Further, we perform K-means clustering on the projections
yielded by NeuralEF for the test images, and get 97.5%
accuracy. As references, the K-means given the random
features (S = 10) yields 81.3% accuracy, and the K-means
given the raw pixels delivers 67.8% accuracy. This substan-
tiates that NTK can characterize the intrinsic similarities
between data points and NeuralEF can approximate NTK
in a more efficient way than random features.

4.3. Advanced Application: Scale up Linearised
Laplace Approximation

Laplace approximation (LA) (Mackay, 1992) is a canonical
approach for approximate posterior inference, yet suffers
from underfitting (Lawrence, 2001). Foong et al. (2019)
proposed to linearise the output of the model about the max-
imum a posteriori (MAP) solution to alleviate this issue (see
also (Khan et al., 2019)). Specifically, we consider learning
an NN model g(·,θ) : X → Nout for data {(xi,yi)}Ni=1

under an isotropic Gaussian prior p(θ) = N (0, σ2
0Idim(θ)).

The linearised Laplace approximation (LLA) first finds the
maximum a posteriori (MAP) solution θMAP, and then uses
the following Gaussian process to form a function-space
approximate posterior:

GP(f |g(x,θMAP), ∂θg(x,θMAP)Σ∂θg(x′,θMAP)>), (21)
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Figure 6: The histograms of the uncertainty estimates for in-distribution CIFAR-10 test data and OOD SVHN test data. We experiment
on ResNet-110 here. AUPR refers to the area under the precision-recall curve.

where Σ is the inversion of the Gauss-Newton matrix6:
Σ−1 =

∑
i ∂θg(xi,θMAP)>Λi∂θg(xi,θMAP) + 1/σ2

0Idim(θ)

with Λi := −∂2gg log p(yi|g)|g=g(xi,θMAP) ∈ RNout×Nout .

However, like the vanilla Laplace approximation, LLA also
suffers from the time-consuming matrix inversion on the ma-
trix of size dim(θ)× dim(θ). We next show that NeuralEF
can be incorporated to overcome this issue.

The covariance kernel in Equation (21) is closely related
to the NTK κNTK(x,x′) = ∂θg(x,θMAP)∂θg(x′,θMAP)>.
Empowered by this observation, we prove that the above GP
can be approximated as (see Appendix A.3 for the proof):

GP
(
f |g(x,θMAP), Ψ̃(x)

[∑
i Ψ̃(xi)

>ΛiΨ̃(xi) + 1
σ2
0
Ik
]−1

Ψ̃(x′)>
)
,

(22)
where Ψ̃(x) := [

√
µ̂1ψ̂1(x), ...,

√
µ̂kψ̂k(x)] ∈ RNout×k with

ψ̂i : X → RNout as the approximate multi-output eigenfunc-
tion (see Section 3.2) corresponding to the approximate i-th
largest eigenvalues µ̂i of κNTK. With this, we only need to
invert a matrix of size k × k to estimate the covariance.

Then, the whole pipeline for the refined LLA is: we
first find θMAP, then use NeuralEF to find the top-k (we
set k = 10 in the experiments) eigenpairs of the ker-
nel κNTK(x,x′) = ∂θg(x,θMAP)∂θg(x′,θMAP)>, then iterate
through the training set to compute

∑
i Ψ̃(xi)

>ΛiΨ̃(xi), and
finally obtain the approximate posterior in Equation (22).

We verify on CIFAR-10 using ResNet architectures where
dim(θ) > 105. Naive LLA fails due to scalability issues, so
we take MAP, Kronecker factored LLA (KFAC LLA), diag-
onal LLA (Diag LLA), and last-layer LLA as baselines. We
implement the last three baselines based on the laplace
library7 (Daxberger et al., 2021). The training kernel matrix
for NeuralEF is of size 5 ·105×5 ·105, but the training only
lasts for half a day. As these methods exhibit similar test
accuracy, we only report the comparison on negative log-
likelihood (NLL) and expected calibration error (ECE) (Guo
et al., 2017) in Table 2. We also depict the histograms of
the uncertainty estimates (measured by predictive entropy)

6The Gauss-Newton matrix serves as a workaround of the
Hessian since that the Hessian is more difficult to estimate.

7https://github.com/AlexImmer/Laplace.

Table 2: Comparison on test NLL ↓ and ECE ↓ on CIFAR-10.

Method ResNet-20 ResNet-56 ResNet-110
NLL ECE NLL ECE NLL ECE

Ours 0.277 0.016 0.234 0.012 0.241 0.010
MAP 0.357 0.049 0.336 0.050 0.345 0.046
KFAC LLA 0.906 0.468 1.576 0.707 1.767 0.749
Diag LLA 0.934 0.480 1.606 0.712 1.797 0.754
Last-layer LLA 0.264 0.026 0.231 0.024 0.233 0.019

for in-distribution and out-of-distribution (OOD) data in
Figure 6. As shown, LLA with NeuralEF is consistently
better than the baselines in the aspect of model calibration.
The NLLs and predictive uncertainty of LLA with NeuralEF
are also better than or on par with the competitors.

See Appendix C.3 for one more application of NeuralEF
where we use it to approximate the implicit kernel induced
by the stochastic gradient descent (SGD) trajectory to per-
form Bayesian deep learning (BDL).

5. Related Work
Recently, there is ongoing effort to associate specific
(Bayesian) NNs with kernel methods or Gaussian pro-
cesses to gain insights for the theoretical understanding
of NNs (Neal, 1996; Lee et al., 2017; Garriga-Alonso et al.,
2018; Matthews et al., 2018; Novak et al., 2018; Jacot et al.,
2018; Arora et al., 2019; Khan et al., 2019; Sun et al., 2020)
or to enrich the family of kernels (Wilson et al., 2016). How-
ever, it has been rarely explored how to solve the equally
important “inverse” problem—designing appropriate NN
counterparts for the kernels of interest. We show in this
work that approximating kernels with NNs can be the key
to scaling up kernel methods to large data.

The Nyström method (Nyström, 1930; Williams & Seeger,
2001) is a classic kernel approximation method, and has
been extended to enable the out-of-sample extension of
spectral embedding methods by Bengio et al. (2004). But
as discussed, the Nyström method faces inefficiency issues
when handling big data and modern kernels like NTKs. In-
stead, deconstructing kernels by NNs has the potential to
ameliorate these pathologies due to the expressiveness and

https://github.com/AlexImmer/Laplace
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scalability of NNs. SpIN is the first work in this spirit (Pfau
et al., 2018). It trains NNs to approximate the top eigenfunc-
tions of the kernel for kernel approximation, but it suffers
from an ill-posed objective function and thereby an involved
learning procedure. It is difficult to extend SpIN to treat
modern kernels and big data due to the the requirement of
Cholesky decomposition and manipulation of Jacobians. Re-
latedly, EigenGame (Gemp et al., 2020) identifies a common
mistake in literature for interpreting PCA as an optimization
problem and proposes ways to fix it. It turns out that the
same spirit also applies to fixing the SpIN objective func-
tion. In fact, NeuralEF can be viewed as a function-space
extension of EigenGame.

6. Conclusion
We propose NeuralEF for scalable kernel approximation in
this paper. During the derivation of the method, we have
deepened the connections between kernels and NNs. We
show the efficacy of NeuralEF and further apply it in several
interesting yet challenging scenarios in unsupervised and
supervised learning. We discuss the limitations and possible
future works of NeuralEF below.

Limitations Currently, we represent each eigenfunction
with a dedicated NN, so we train k NNs to cover the top-k
eigenpairs. This may become costly when we have to use
a large k (i.e., the eigenspectrum is long-tail). Besides, we
empirically observe that NeuralEF has difficulties capturing
the eigenpairs with relatively small eigenvalues (e.g., 1% of
the largest eigenvalue) perhaps due to issues in stochastic op-
timization or numerical errors. Finally, It is difficult to tune
the hyper-parameters of the kernel while using NeuralEF
approximations.

Future work To promote parameter efficiency and poten-
tially support a very large k, we need to perform weight-
sharing among the k neural eigenfunctions. More appealing
applications such as using NeuralEF as unsupervised repre-
sentation learners also deserve future investigation.
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A. Proof
A.1. Proof of Theorem 1

Theorem 1. The eigenpairs of the kernel κ(x,x′) can be recovered by simultaneously solving the following asymmetric
maximization problems:

max
ψ̂j

Rjj s.t.:Cj = 1, Rij = 0, ∀j ≥ 1, i ∈ [j − 1], (11)

where ψ̂j ∈ L2(X , q) represent the introduced approximate eigenfunctions, and

Rij :=

¨
ψ̂i(x)κ(x,x′)ψ̂j(x

′)q(x′)q(x)dx′dx, (12)

Cj :=

ˆ
ψ̂j(x)ψ̂j(x)q(x)dx. (13)

(Rjj , ψ̂j) will converge to the eigenpair associated with j-th largest eigenvalue of κ.

Proof. First of all, it is easy to see that the functions in L2(X , q) form an inner product space with inner product given by:

〈ϕ,ϕ′〉 =

ˆ
ϕ(x)ϕ′(x)q(x)dx, ∀ϕ,ϕ′ ∈ L2(X , q).

By Mercer’s theorem, we have κ(x,x′) =
∑
j≥1 µjψj(x)ψj(x

′) where (µj , ψj) refers to the j-th ground truth eigenpair
of κ. Without loss of generality, we assume ∀i < j: µi > µj .

It is easy to reformulate the problems in Equation (11) as:

max
ψ̂1

R11 s.t.:C1 = 1

max
ψ̂2

R22 s.t.:C2 = 1, R12 = 0

max
ψ̂3

R33 s.t.:C3 = 1, R13 = 0, R23 = 0

...

Interestingly, when simultaneously solving these problems, the solution to the j-th problem only depends on the those to the
preceding problems and is independent of those to the following problems. Therefore, we can derive the solutions to the
problems in a sequencial manner.

Specifically, we first consider the maximization objective in the first problem:

R11 =

¨
ψ̂1(x)κ(x,x′)ψ̂1(x′)q(x′)q(x)dx′dx

=

¨
ψ̂1(x)

∑
j≥1

µjψj(x)ψj(x
′)

 ψ̂1(x′)q(x′)q(x)dx′dx

=
∑
j≥1

µj

¨
ψ̂1(x)ψj(x)ψj(x

′)ψ̂1(x′)q(x′)q(x)dx′dx

=
∑
j≥1

µj

ˆ
ψ̂1(x)ψj(x)q(x)dx

ˆ
ψ̂1(x′)ψj(x

′)q(x′)dx′

=
∑
j≥1

µj〈ψ̂1, ψj〉2.

Given the definition that the eigenfunctions {ψj}j≥1 are orthonormal (see Equation (6)), we know they form a set of
orthonormal bases of the L2(X , q) space. Thus, we can represent ψ̂1 in such a new axis system by coordinate (w1, w2, ...):

ψ̂1 =
∑
i≥1

wiψi.
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We can then rewrite the maximization objective as:

R11 =
∑
j≥1

µj〈ψ̂1, ψj〉2 =
∑
j≥1

µj〈
∑
i≥1

wiψi, ψj〉2 =
∑
j≥1

µjw
2
j .

Recalling the constraint C1 = 1, we have

〈ψ̂1, ψ̂1〉 = 〈
∑
i≥1

wiψi,
∑
j≥1

wjψj〉 =
∑
i,j≥1

wiwj〈ψi, ψj〉 =
∑
j≥1

w2
j = 1.

Then, it is straight-forward to see the maximum value of R11 is the largest ground truth eigenvalue µ1. The condition to
make the maximization hold is that (w1, w2, ...) is a one-hot vector with the first element as 1, namely, ψ̂1 = ψ1. Thereby,
we prove that solving the first problem uncovers the first eigenvalue as well as the associated eigenfunction of the kernel κ.

We then consider solving the second problem given ψ̂1 = ψ1. Compared to the first problem, there is one more constraint:

R12 = 0

⇒
¨

ψ̂1(x)κ(x,x′)ψ̂2(x′)q(x′)q(x)dx′dx = 0

⇒
ˆ
ψ̂2(x′)q(x′)

ˆ
ψ̂1(x)κ(x,x′)q(x)dxdx′ = 0

⇒
ˆ
ψ̂2(x′)q(x′)

ˆ
ψ1(x)κ(x,x′)q(x)dxdx′ = 0

⇒
ˆ
ψ̂2(x′)q(x′)µ1ψ1(x′)dx′ = 0

⇒ 〈ψ1,ψ̂2〉 = 0.

Namely, ψ̂2 is constrained in the orthogonal complement of the subspace spanned by ψ1. Given such a minor difference
between the second problem and the first problem, we can apply an analysis similar to that for the first problem to solve
the second problem. Note that µ2 is the largest eigenvalue in the orthogonal complement of the subspace spanned by ψ1,
(R22, ψ̂2) would hence converge to the 2-th largest eigenvalue and the associated eigenfunction of κ.

Applying this procedure incrementally to the additional problems then finishes the proof.

A.2. Justification of NeuralEF in Practice

Though, ideally, ψ̂j would converge to the ground truth eigenfunction ψj by Theorem 1, in practice, when performing
optimization according to Equation (14) we cannot guarantee that at the convergence ψ̂j is exactly equivalent to ψj . May
the small deviation in the solutions to the preceding problems significantly bias the solutions to the following problems? We
show that it is not the case below.

To simplify the analysis, we consider only the first two problems in Equation (14), namely, learning the first two approximate
eigenfunctions ψ̂1 and ψ̂2. As done in the proof of Theorem 1, we represent ψ̂1 and ψ̂2 in the axis system specified by
{ψj}j≥1:

ψ̂1 =
∑
i≥1

viψi ψ̂2 =
∑
i≥1

wiψi.

At first, we assume that solving maxψ̂1
R11 s.t.:C1 = 1, whose optima is ψ1, leads to that ‖ψ̂1 − ψ1‖2 < 2ε1 < 2, where

‖ · ‖ refers to the norm induced by the inner product in L2(X , q). Then,

‖ψ̂1 − ψ1‖2 < 2ε1 ⇒ 2− 2〈ψ̂1, ψ1〉 < 2ε1 ⇒ 2− 2v1 < 2ε1 ⇒ v1 > 1− ε1.

As ψ̂1 is normalized, we have:

v21 + v22 ≤ 1 ⇒ v22 ≤ 1− v21 ≤ 1− (1− ε1)2 = 2ε1 − ε21 ⇒ |v2| <
√

2ε1 − ε21.
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We then assume that solving maxψ̂2
−R

2
12

R11
results in that |R12| < ε2 < 1. Given that

R12 =

¨
ψ̂1(x)κ(x,x′)ψ̂2(x′)q(x′)q(x)dx′dx

=

¨ ∑
i≥1

viψi(x)

∑
j≥1

µjψj(x)ψj(x
′)

 ψ̂2(x′)q(x′)q(x)dx′dx

=
∑
i≥1

vi
∑
j≥1

µj

ˆ
ψi(x)ψj(x)q(x)dx

ˆ
ψj(x

′)ψ̂2(x′)q(x′)dx′

=
∑
i≥1

vi
∑
j≥1

µj1[i = j]〈ψj , ψ̂2〉

=
∑
i≥1

viµi〈ψi, ψ̂2〉

=
∑
i≥1

viµiwi,

we have |
∑
i≥1 viµiwi| < ε2.

We consider the optima ψ̂∗2 of the problem maxψ̂2
R22 − R2

12

R11
s.t.:C2 = 1, which equals to

max
{wj}j≥1

∑
j≥1

µjw
2
j s.t.: |

∑
i≥1

viµiwi| < ε2,
∑
j≥1

w2
j = 1.

It is easy to see at the maximum, w2
i = 0, ∀ i > 2. Namely, ψ̂∗2 = w1ψ1 + w2ψ2 with w2

1 + w2
2 = 1.

Without loss of generality, we assume w2 > 0 and measure the distance between ψ̂∗2 and ψ2 to estimate the induced bias:8

‖ψ̂∗2 − ψ2‖2 = 2− 2〈ψ̂∗2 , ψ2〉 = 2− 2w2 = 2− 2
√

1− w2
1 ≤ 2− 2(1− w2

1) = 2w2
1.

Recall that |v1µ1w1 + v2µ2w2| < ε2, v1 > 1− ε1, and |v2| <
√

2ε1 − ε21, then

1) when w1 > 0:

(1− ε1)µ1w1 < v1µ1w1 < ε2 − v2µ2w2 ≤ ε2 +
√

2ε1 − ε21µ2,

then w1 <
1

(1−ε1)µ1
(ε2 +

√
2ε1 − ε21µ2);

2) when w1 < 0:

(1− ε1)µ1w1 > v1µ1w1 > −ε2 − v2µ2w2 ≥ −ε2 −
√

2ε1 − ε21µ2,

then w1 >
1

(1−ε1)µ1
(−ε2 −

√
2ε1 − ε21µ2).

Therefore, |w1| is small if ‖ψ̂1 − ψ1‖2 and |R12| are small, and in turn ‖ψ̂∗2 − ψ2‖2 = 2w2
1 is small.

Applying this procedure incrementally to the additional problems then finishes the whole justification.

A.3. Proof of Equation (22)

Proof. We denote ∂θg(x,θMAP) as J∗x for compactness. We concatenate {J∗xi
∈ RNout×dim(θ)}Ni=1 as a big matrix J∗Xtr

∈
RNNout×dim(θ), and organize {Λi ∈ RNout×Nout}Ni=1 as a block-diagonal matrix ΛXtr ∈ RNNout×NNout . Then, by Woodbury

8It w2 < 0, we measure the distance between ψ̂∗2 and −ψ2, and the consequence is the same.
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matrix identity (Woodbury, 1950), Σ can be rephrased:

Σ =

[∑
i

J∗xi

>ΛiJ
∗
xi

+ 1/σ2
0Idim(θ)

]−1
=
[
J∗Xtr

>ΛXtrJ
∗
Xtr

+ 1/σ2
0Idim(θ)

]−1
= σ2

0

(
Idim(θ) − J∗Xtr

>
[
1/σ2

0Λ
−1
Xtr

+ J∗Xtr
J∗Xtr

>
]−1

J∗Xtr

)
.

Consequently, the covariance in Equation (21) becomes:

J∗xΣJ∗x′
>

=σ2
0J
∗
x

(
Idim(θ) − J∗Xtr

>
[
1/σ2

0Λ
−1
Xtr

+ J∗Xtr
J∗Xtr

>
]−1

J∗Xtr

)
J∗x′
>

=σ2
0

(
J∗xJ∗x′

> − J∗xJ∗Xtr

>
[
1/σ2

0Λ
−1
Xtr

+ J∗Xtr
J∗Xtr

>
]−1

J∗Xtr
J∗x′
>
)

=σ2
0

(
κNTK(x,x′)− κNTK(x,Xtr)

[
1/σ2

0Λ
−1
Xtr

+ κNTK(Xtr,Xtr)
]−1

κNTK(Xtr,x
′)
)

(κNTK(x,x′) := ∂θg(x,θMAP)∂θg(x′,θMAP)> = J∗xJ∗x′
>)

≈σ2
0

(
Ψ̃(x)Ψ̃(x′)> − Ψ̃(x)Ψ̃(Xtr)

>
[
1/σ2

0Λ
−1
Xtr

+ Ψ̃(Xtr)Ψ̃(Xtr)
>
]−1

Ψ̃(Xtr)Ψ̃(x′)>
)

(Mercer’s theorem)

=Ψ̃(x)σ2
0

(
Ik − Ψ̃(Xtr)

>
[
1/σ2

0Λ
−1
Xtr

+ Ψ̃(Xtr)Ψ̃(Xtr)
>
]−1

Ψ̃(Xtr)

)
Ψ̃(x′)>

=Ψ̃(x)
[
Ψ̃(Xtr)

>ΛXtrΨ̃(Xtr) + 1/σ2
0Ik

]−1
Ψ̃(x′)> (Woodbury matrix identity)

=Ψ̃(x)

[∑
i

Ψ̃(xi)
>ΛiΨ̃(xi) + 1/σ2

0Ik

]−1
Ψ̃(x′)>

where Ψ̃(x) := [
√
µ̂1ψ̂1(x), ...,

√
µ̂kψ̂k(x)] ∈ RNout×k with ψ̂i : X → RNout as the approximate multi-output eigen-

function corresponding to the approximate i-th largest eigenvalues µ̂i of κNTK. Note that Ψ̃(Xtr) is the concatenation of
Ψ̃(x1), ..., Ψ̃(xN ) and hence is of size NNout × k.

Thus, we obtain Equation (22).

B. Experiment Settings
Implementation of the Nyström method To find the top-k eigenpairs, we use the scipy.linalg.eigh API to
eigendecompose the kernel matrix κ(Xtr,Xtr) ∈ RN×N with the argument subset by index as [N − k,N − 1].

Experiments on classic kernels We use 3-layer MLP to instantiate the neural eigenfunctions. The hidden size of the MLP
is set as 32. We use a mixture of Sin and Cos activations, namely, one half of the hidden neurons use Sin activation and
the other half use Cos activation.

Experiments on MLP-GP kernels The architecture of concern is a 3-layer MLP. To set up the MLP-GP kernels, for every
linear layer, the prior on the weights is set asN (0, 2/ω) with ω as the layer width, and the prior on the bias is set asN (0, 1).
To compute the kernel matrix on the training data, we instantiate a finitely wide MLP whose width is 16, and perform MC
estimation by virtue of the strategies in Section 3.3. The number of MC samples S is set as 10000.

Experiments on CNN-GP kernels To set up the CNN-GP kernels, for every convolutional/linear layer, the prior on the
weights is set as N (0, 2/fan in), and the prior on the bias is set as N (0, 0.01). To compute the kernel matrix on the training
data, we instantiate a finitely wide CNN whose width is 16, and perform MC estimation by virtue of the strategies in
Section 3.3. The number of MC samples S is set as 2000. We instantiate ψ̂ as the CNNs with the same architecture as the



NeuralEF: Deconstructing Kernels by Deep Neural Networks

1.0 0.5 0.0 0.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y

(x
,x

′ )=
(x

x′
+

1.
5)

4
Eigenfunction comparison (64 samples)

Nyström
SpIN
Our

1.0 0.5 0.0 0.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Eigenfunction comparison (512 samples)

1.0 0.5 0.0 0.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Eigenfunction comparison (8192 samples)

64 512 8192
Number of samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

ni
ng

 ti
m

e 
(s

)

Training time comparison

2 1 0 1 2
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

(x
,x

′ )=
ex

p(
||x

x′
||2 /2

)

 

2 1 0 1 2
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

 

2 1 0 1 2
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

 

64 512 8192
Number of samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Tr
ai

ni
ng

 ti
m

e 
(s

)

 

Figure 7: Estimate the eigenfunctions of the polynomial and RBF kernels with the Nyström method, SpIN, and NeuralEF (our). NeuralEF
behaves as well as Nyström method but consumes nearly constant training time w.r.t. sample size.

concerned CNN-GP kernel but augmented with batch normalization (Ioffe & Szegedy, 2015), and set the the layers width as
32, 64, 128. We use 6000 randomly sampled MNIST training images (due to resource constraint) to perform the Nyström
method. The used polynomial kernel and RBF kernel take the follows forms:

κ(x, x′) = (0.001x>x′ + 1)10

κ(x, x′) = exp(−‖x− x′‖2/2/100),

where the hyper-parameters are found by grid search.

Experiments on NTKs For the trained NN classifier, we fuse the BN layers into the convolutional layers to get a compact
model that possesses 269, 034 parameters. To compute the kernel matrix on the training data, we perform MC estimation
by virtue of the strategies in Section 3.3 and the number of MC samples S is set as 4000. We instantiate ψ̂ as widened
ResNet-20 with widening factor of 2.0.

Experiments on the linearised Laplace approximation with NeuralEF We train the CIFAR-10 classifiers with ResNet
architectures for totally 150 epochs under MAP principle. The optimization settings are identical to the above ones. In
particular, the weight decay is 10−4, thus we can estimate the prior variance σ2

0 = 1
50000×10−4 = 0.2 where 50000 is the

number of training data N . After classifier training, we fuse the BN layers into the convolutional layers to get a compact
model. To compute the kernel matrix on the training data, we perform MC estimation by virtue of the strategies in Section 3.3
and the number of MC samples S is set as 4000. We instantiate ψ̂ as widened ResNet-20 with widening factor of 2.0. We
learn the matrix-valued NTK kernel with the strategy provided in Section 3.2. When testing, we use 256 MC samples from
the function-space posterior to empirically estimate the predictive distribution as the categorical likelihood is not conjugate
of Gaussian. We scale the sampled noises by 20 given the observation that they are pretty tiny orginally.

Experiments on the implicit kernel induced by SGD trajectory To collect the SGD iterates, we first train the CIFAR-10
classifiers for 150 epochs. We set the initial learning rate as 0.1, and scale the learning rate by 0.1 at 80-th and 120-th epochs.
We use SGD optimizer with 0.9 momentum to train the the classifiers, with the batch size set as 128. From 150-th epoch
to 155-th epoch, we linearly increase the learning rate from 0.001 to 0.05, and then keep it constant until the classifiers
have been trained for 200 epochs. We totally collect M = 50 weight samples for SWA and SWAG (one at per epoch). We
cannot use more weight samples for constructing the Gaussian covariance in SWAG due to memory constraint. However,
with NeuralEF introduced for kernel approximation, we can use many weight samples for defining κSGD as eventually we
save only the top eigenfunctions of the kernel instead of the kernel itself. In practice, we collect the function evaluations
on the training set of around M = 4000 weights from the SGD trajectory, based on which we estimate the training kernel
matrix. We instantiate ψ̂ as widened ResNet-20 with widening factor of 2.0. When testing, we use 256 MC samples from
the function-space posterior to empirically estimate the predictive distribution as the categorical likelihood is not conjugate
of Gaussian.



NeuralEF: Deconstructing Kernels by Deep Neural Networks

Figure 8: Project MNIST test images to the 3-D space by the approximate top-3 eigenfunctions of the CNN-GP kernel found by NeuralEF.
Each color represents an category.

C. More Experiments
C.1. More Results on Polynomial and RBF kernels

We provide more results of various kernel approximation methods for the aforementioned polynomial and RBF kernels in
Figure 7.

C.2. Visualization of the Projections of MNIST Test Images

We plot the top-3 dimensions of the projections belonging to the MNIST test images produced by NeuralEF in Figure 8.
The NeuralEF model is trained to deconstruct the CNN-GP kernel mentioned in Section 4.2.1. We see the projections form
class-conditional clusters, implying that NeuralEF can learn the discriminative structures in the CNN-GP kernel.

C.3. Learn the Kernel Induced by SGD Trajectory

There has been a surge of interest in exploiting the SGD trajectory for Bayesian deep learning, attirbuted to the close connec-
tion between the stationary distribution of SGD iterates and the Bayesian posterior (Mandt et al., 2017). SWAG (Maddox
et al., 2019) is a typical method in this line: it collects a bunch of NN weights from the SGD trajectory then constructs
approximate weight-space posteriors. In fact, akin to the random feature approaches, the SGD iterates implicitly induce a
kernel:

κSGD(x,x′) =
1

M

M∑
i=1

(g(x,θi)− ḡ(x)) (g(x′,θi)− ḡ(x′))
>
,

where g refers to an NN function, {θi}Mi=1 are the weights SGD traverses, and ḡ(·) = 1
M g(·,θi) is the ensemble of SGD

iterates. We can then define a Gaussian process GP(ḡ(x), κSGD(x,x′)) to approximate the true function-space posterior,
which leads to the posterior predictive

p(xnew) =

ˆ
GP(f |ḡ(x), κSGD(x,x′))p(xnew|f)df.

Yet, the evaluation of both ḡ and κSGD on a datum x entails M forward passes, resulting in the dilemma of deciding
efficiency or exactness. Nonetheless, we can conjoin both by (i) taking the Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018), which predicts with the average weights, as a substitute for ḡ9 and (ii) proceeding with the top eigenfunctions
of κSGD instead of the kernel itself.

To verify, we experiment on the full CIFAR-10 dataset with ResNets. Following the common assumption in GP classification,
we assume that the kernel correlations among output dimensions are negligible, so κX,X degrads to Nout matrices of size
B ×B. Viewing ψ̂X

j as Nout vectors of size B, we can then compute the losses Equation (17) dimension by dimension, sum
them up, and invoke once backprop. With this strategy, we find the top-10 eigenpairs at per output dimension, and then
use them for kernel recovery and posteriori prediction. We dub our model as SWA+NeuralEF. More experimental details

9Maddox et al. (2019) found that SWA is basically on par with ḡ in terms of performance.



NeuralEF: Deconstructing Kernels by Deep Neural Networks

ResNet20 ResNet32 ResNet56 ResNet110
 

91

92

93

94

A
cc

ur
ac

y 
(%

)

91.94
92.03

92.43

92.85

92.64 92.71

93.59

93.85

92.56
92.64

93.43

93.71

92.56

92.76

93.64

93.87

SGD
SWA

SWAG
SWA+NeuralEF

ResNet20 ResNet32 ResNet56 ResNet110
 

0.15

0.20

0.25

0.30

0.35

N
eg

at
iv

e 
Lo

g-
lik

el
ih

oo
d

ResNet20 ResNet32 ResNet56 ResNet110
 

0.00

0.01

0.02

0.03

0.04

0.05

Ex
pe

ct
ed

 C
al

ib
ra

tio
n 

Er
ro

r

Figure 9: Test accuracy ↑, NLL ↓, and ECE ↓ comparisons among models on CIFAR-10.
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Figure 10: NLL ↓ and ECE ↓ on CIFAR-10 corruptions for models trained with ResNet-20 architecture. The results across 19 types of
skew are summarized in the boxes.

are presented in Appendix B. The baselines of concern include the vanilla models trained by SGD, SWA, and SWAG. The
results on test accuracy, negative log-likelihood (NLL), and expected calibration error (ECE) (Guo et al., 2017) are given in
Figure 9. We further assess the models with ResNet-20 architecture on CIFAR-10 corruptions (Hendrycks & Dietterich,
2019), a standard OOD testbed for CIFAR-10 models, with Figure 10 presenting the results.

We can see that SWA+NeuralEF is on par with or superior over SWAG across evaluation metrics, and outperforms SWA,
especially in the aspect of ECE. We emphasize that another merit of SWA+NeuralEF is that, unlike SWAG, the storage cost
of SWA+NeuralEF is agnostic to M .


