
Combined Learning of Neural Network Weights for Privacy

in Collaborative Tasks

Aline R. Ioste Alan M. Durham Marcelo Finger

Universidade de São Paulo - Brazil

Abstract

We introduce CoLN, Combined Learning of Neural network weights, a novel method to
securely combine Machine Learning models over sensitive data with no sharing of data. With
CoLN, local hosts use the same Neural Network architecture and base parameters to train
a model using only locally available data. Locally trained models are then submitted to a
combining agent, which produces a combined model. The new model’s parameters can be
send back to hosts, and can then be used as initial parameters for a new training iteration.
CoLN is capable of combining several distributed neural networks of the same kind, but is
not restricted to any single neural architecture. In this paper we detail the combination algo-
rithm and present experiments with feed-forward, convolutional and recurrent Neural Network
architectures, showing that the CoLN combined model approximates the performance of a hy-
pothetical ideal centralized model, trained using the combination of the local datasets. CoLN
can contribute for secure collaborative research, as required in the medical area, where pri-
vacy issues preclude data sharing, but where the limitations of local data demand information
derived from larger datasets.

1 Introduction

During the standard training of neural network models, it is usually assumed that all data is
readily available to be used by the application. However, this assumption is not valid when
handling sensitive data that is distributed over several hosts with access restrictions [1]. Existing
data protection laws, in particular the General Data Protection Regulation (GDPR) [2], limit
data sharing and, as a consequence, the potential size of the training sets, which in turn can
reduce the accuracy of the models. In fact, several applications of Deep Learning in Health have
already pointed to the conflict between the need to collaborate and the need to respect privacy
constraints [3, 4, 5]. The consequence is a restriction on collaborative research across international
borders, when private patient data is involved [6, 7, 8].

The machine learning community has proposed several approaches to provide data protection
while still using centralized training, including: data anonymization, differential privacy [9, 10],
homomorphic encryption to data cryptography [11, 12], and combined data anonymization with
random noise generation, enhanced with homomorphic encryption [13]. However, these approaches
are not always feasible. First, anonymization may still expose personal information [14]; second,
some approaches may reduce the final performance of the machine learning method [11, 9]; third,
different privacy and security restrictions in the data may still preclude exporting training data
to centralized locations, specially when this involves data crossing international borders [15, 1].

Decentralized learning addresses these challenges [16, 17, 18, 19, 20]. In a decentralized learning
approach, separate models are trained locally by separate hosts, and a combined model is produced
by using the parameters and metadata of the local models. Such an approach is more privacy
compliant, as no data is shared and it is not possible to reconstruct input data from the parameters
of locally trained models [21, 22].
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In the context of decentralized learning, one of the most popular approached is Federated
Learning, initially proposed in the Federated Average (FedAvg) algorithm, where local parameters
are averaged to obtain the centralized values [23, 24].

Several variations of this technique were proposed:

• Federated Proximal (FedProx) [25], an approach designed to optimize network traffic. This
approach was proposed as a federated optimization structure for heterogeneous networks.
This techique limits the impact of local updates, restricting them to be close to the current
model.

• Agnostic Federated Learning (AFL) [26], an approach designed to cope with with non-
uniform distribution of data points which is agnostic with respect to data distribution,
assuming that global loss is an unknown convex combination of local data. AFL uses a
stochastic optimization process which applies a regularization that provides learning guar-
antees.

• Probabilistic Federated Neural Matching (PFNM) [27] proposes another form of parameter
combination that identifies subsets of neurons in each of the local models that match neurons
in other local models, and then combine the matched neurons to form a global model.
However, the method only works with simple network architectures, without applicability to
to Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

• Federated Matched Averaging (FedMA) [28] extends PFNM ideas to CNNs and LSTMs.
FedMA is a layers-wide federated learning algorithm that employs Bayesian non-parametric
methods to adapt to heterogeneity in the data.

We present Combined Learning of Neural network weights (CoLN), a new Distributed Learning
approach to combine parameter information inferred autonomously by several distributed hosts
engaged in collaborative work. Only local model parameters and information on local dataset
sizes are transmitted over the network by the collaborating hosts. The method avoids traffic issues
present in some distributed learning algorithms, with very little information being exchanged in
the network and a reduced number of steps required in the process. More important, the method
is very resilient to variations in the local data distributions and dataset sizes.

CoLN achieves the goal of obtaining, from a set of models locally trained on distinct datasets,
a combined model that approximates the performance of a hypothetical ideal centralized model,
which would be the result of using the combined local datasets for training a single model.
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2 Methods

CoLN is an interactive approach that, at each round, first performs training with the models
initialized by the same set of parameter values, and then compute a new set of parameters com-
bining the parameters resulting from each local training. For the combination phase we use a
linear combination of the local values that avoids catastrophic forgetting and, at the same time,
ensures generalization.

2.1 Basic architecture

We assume there are H host sites, each with a distinct data set and with a host model trained
using the local data. All sites should use the same Neural Network architecture as the basic model
and, before training, are initialize it with the same parameters.

Model parameters consist of weights, biases and hyper parameters. In this view a layer is
viewed as an individual matrix or tensor, whose parameters are called simply weights; biases are
assumed to be elements of layers like any other weights in the network.

For the method’s presentation, we refer to a synchronizing site in charge of combining the
locally trained host models. However, the parameter combination process to obtain the combined
model can be performed in one of the hosts, or in parallel by all local hosts.

The CoLN central hypothesis is that, when we have H local hosts each with W weights, we
can combined the learning of all hosts usint a linear transformation on local host weights (wh

i ):

wi =

H∑
h=1

αhwh
i + βi, 1 ≤ i ≤W (1)

A central hypothesis of this work, which we tried to empirically validate, is that a linear
combination is a good way to combine network weights. Intuitively, linear combinations are a
well-founded and simple method, which allows for quite flexible and expressive combinations based
on the coefficients α and β. The coefficients α and β are refined below with reference to network
layers in Section 2.2. The value of αh reflects the relevance of host h relative to other hosts; the
value of βi is empirically determined based on a notion of distance between the weights of host h
and a hypothetical centralized model. Empirically, the linear combination detailed in Section 2.2
satisfies the following characteristics:

(i) The composed model is closer to the centrally trained model w∗, that is, dist(w,w∗) <
dist(wh, w∗) for every h ∈ [1, H]. The distance is measured by Eq. (4), but it could be
understood in terms of improved accuracy, namely that the combined model is closer to the
accuracy of a hypothetical centralized model than any of the local hosts.

(ii) We can re-train the local parameters using initial weights w and reiterate the process,
obtaining obtaining w, a better approximation of w∗-performance, that is, dist(w,w∗) <
dist(w,w∗).

The first characteristic would give us the possibility of producing a strongly-decoupled dis-
tributed learning method with low communication overhead, in which each host starts with the
same initial model w0 and, with its own dataset, autonomously produces a model wh which is
sent only to a synchronizer, which computes w. The second characteristic would ensure that this
process could be iterated to obtain an even better model.

It is important to note that, different than that other approaches, we do not require the linear
coefficients to be convex, that is, for a fixed weight i, α1, . . . , αH , βi are not required to add up
to 1. In fact, previous experiments indicated that convexity does not guarantee characteristics (i)
and (ii), suggesting that the centralized optimal model lies outside of the convex hull of the local
optimum models. This fact should not be a surprise. If the centralized model resulting from an
optimization using all the data were obtainable as a convex combination of host models, this would
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indicate a linear nature of the neural models, contrary to the existence of non-linear activation
functions in almost all non-trivial neural models.

In CoLN, model combination proceeds in a sequence of rounds, whose main characteristics are
as follows.

1. Initialization: At the beginning of each round all hosts use the same set of parameters.
This is a synchronization point. In the first round, the initial weights could be generated
randomly and then distributed, or obtained from a previously trained model. In subsequent
rounds, the initial weights of the models are the result of the CoLN combination of previous
round.

2. Training: Each host trains its model based only on locally available data, independently
from all other hosts. The number of epochs used by each host site may vary; locally available
datasets can be of different sizes and present different distributions.

3. Synchronizing: After local training, local model weights are exported to a synchronizing
site, where a synchronized model is computed using the linear transformation. The round
finishes with the redistribution of the synchronized model weights back to the hosts.

2.2 Combination Coefficients

We now will refine and detail the combination method described in equation (1). For this we
need to associate individual weights with a layer in the model.

The linear combination have the following formal parameters:

• L, the number of layers of the common architecture;

• M`, the number of weights and biases in layer `, ` ∈ [1, L] of the common architecture;

• H, the amount of host models;

• Th, the size of the training corpus at host site h; the total size of training data is T =∑H
h=1 Th;

• rh, the relative size of the training corpus at d with respect to the total size, rh = Th

T .

• wh
i,`, the value of ith weight in layer ` for host model h, 1 ≤ i ≤ m`, 1 ≤ h ≤ H.

• wi,`, the value of ith weight in layer ` in the synchronized model.

Now the can refine the combination method (1) to:

wi,` =

H∑
h=1

αhwh
i,` + βi,`, 1 ≤ i ≤M`, 1 ≤ ` ≤ L (2)

Equation (2) involves both layer independent linear combiners αh and layer dependent shift
values βi,`; described below.

Determining Combination Rate αh

The first experimental study aimed at evaluating the format of the linear combination and
its hyper-parameters. For that, we used the COVID-19 dataset with the aim of predicting the
presence of COVID-19 in patients based on a series of other laboratory exams. From the original
dataset, two hosts were artificially built, one with 100% positive COVID-19 cases and one with
100% negative cases, and a balanced global test with 50% positive and 50% negative cases. The
goal of using models with high discrepancy is to have a clear experimental view of accuracy gain by
combining the 50% accuracy local models and determining the best linear combiners to achieve a
combined model that can achieve a high rating. Note that at this point, we did not compare with

4



a centralized model trained on all data which, for the record, reaches 99.64%. The initial idea was
to study the feasibility of initializing identically two host models locally training them and then to
combine them using linear combiner value of αh = 1 + rh. In the model exposed in Equation (2)
to (6), this corresponds to c = 1 expanded only for the first two terms of its Taylor-series format.
Both models were trained with the number of epochs necessary to achieve the best local accuracy.
The models are submitted to several rounds of CoLN-combination and the results are shown in
figure 1.

Figure 1: Combinated accuracy in COVID-19 data with αh = 1 + rh, h = 1, 2.

These initial combined accuracy obtained in the first round is 94,803%, and it keeps improving
for the next three rounds to 97.31%, but then it starts decreasing and never recovers until, at
round 24, it reaches about 50%, which was the accuracy of each model trained separately. At this
point, we had two alternatives, either establishing a method to stop at the appropriate combination
round, which in this case was round 4, or to devise a method which would not suffer from this form
of decay. We decided for the second alternative, exploring linear combiners of the form αh = ec·rh .
For the case c = 1, the results obtained are shown in figure 2.

Figure 2: Combinated accuracy in COVID-19 data with αh = ec.rh , c = +1, h = 1, 2.

In this case, in only three rounds we reached maximum combined accuracy of 97.32%, just
like before, but the decay in figure 2 was very much like that in figure 1, and we noted that both
the average size of the weights as well as their standard deviation were increasing at each round,
much like the phenomenon of exploding gradients. So, we searched for methods to avoid this
explosion, or somehow revert it. Employing a value of c = -1 in αh = ec·rh led to a degradation
of performance, that is, a total failure of combination, but then we had the idea of alternating c
= +1 with c = -1 in consecutive rounds, and the results of this alternation are shown in figure 3.
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Figure 3: Combinated accuracy in COVID-19 data with αh = ec·rh , c = +1/c = (−1), h = 1, 2.

Starting from a random model, we accuracy of 66.129% in the first iteration, 64.51% in the
second, 98.92% in the third, 98.74% in the fourth and 99.10% in the fifth. We can see that,
in the alternative case, the phenomenon of sharp accuracy decay in precision is not present. In
this setting, we can decide to halt the combination rounds once the accuracy increase between
rounds stays within some interval (another hyper-parameter). However, the alternation process is
inefficient and computationally expensive. In fact, as seen in figure 3, when we alternate weight
expansion rounds c = 1 with weight contracting rounds c = −1, the latter combination never
increases accuracy and is employed only to avoid weight degradation, so that half rounds are not
moving the combination toward maximum accuracy; but once this point is reached, it stays there.
We still do not consider it as the best solution, and investigate other combination rate values. In
traditional gradient descent backpropagation method, the learning rate allows one to in- corporate
a fraction of the gradient at every training epoch. When the learning rate is large, the learning
process may diverge, so usually small values of learning rate are used for better results. In analogy
to this case, we experimented with small combination rates, without alternation, to avoid weight
decay. In that spirit, we explored linear combiners of the form αh = ec·rh , with c = 10(−3); the
results obtained are shown in figure 4

Figure 4: Combinated accuracy in COVID-19 data with αh = ec.rh , c = 10(−3), h = 1,2

Combining the network weights in small hops avoids the degradation of the central model
without requiring expensive alternations, as seen in figure 4. Starting from a random model, we
accuracy of 49,64% in the first iteration, 78,32% in the second, 97,85% in the third, 99,28% in the
fourth and 100,000% in the fifth. In the following, we fix CoLN combination rate hyperparameter
at c = 10(−3) employing linear combiners of the form equation 3. Experiments showed that it is
possible to start the combination process with an already trained model by some host, with faster
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convergence. However, to avoid searching for a volunteer to start the process, we always start
with a random model.

Linear CoLNbyLayerombiners are host-dependent exponential factors based on the relative
size of the host’s dataset:

αh = ec·rh (3)

where rh is the host’s relative dataset size; and c is a hyper-parameter, the combination rate.
In the empirical validation of the linear combination of layer weights, several alternatives for

the value of αh were considered. Due to the non-linear nature of neural networks, a convex
combination of weights was ruled out, and a we initially considered using the value αh

1 = 1 + rh.
Then we realized that 1 + rd are just the first two terms of the Taylor-series expansion of the
more general formula αh

2 = ec.rh , and noted that this form for the linear combiner leads to a
faster convergence of the CoLN algorithm; note that αh

2 corresponds to (3) with combination rate
c = +1.

In the supplementary material we describe the series of experiments on different families of
coefficients α1, . . . , αH , β, which led to CoLN’s final linear combination coefficients. In fact, these
experiments showed that both αh

1 and αh
2 led to an explosive growth of weight values after a few

combination rounds, which in turn leads to a sharp drop in the combined accuracy, a phenomenon
akin to the exploding gradients in Recurrent Nerual Networks [29].

After experimenting with alternating values of c = +1 and c = −1 in successive combination
rounds, we settled for values of c ∈ [10−6,10−3], which, in our experiments, avoided the weight
size explosion phenomenon (see supplementary material).

The computation of shift values employs two auxiliary functions. The first is a measure of a
distance between the specific weight and its counterparts in the other host models, as given by:

WeightDistance(i, `) =

√√√√H−1∑
j=1

H∑
k=j+1

(
wj

i,` · rj − wk
i,` · rk

)2
(4)

According to Eq. (4), all weights at host h are scaled by the data size rate rh prior to computing
a summation of all squared euclidian distances between all scaled layer weights, thus producing
WeightDistance(i, `).

The second is a layer distance:

LayerDistance(`) =

√∑M`

i=1

∑H−1
j=1

∑H
k=j+1(wj

i,` − wk
i,`)

2

M`
(5)

The LayerDistance(`) computes a ponderation over all weights of the sum of the squared
distances between all layer weights. The idea is to produce a shift for all weights in a layer whose
distance to the layer is below average.

We can now define βi,`, the shift value for weight i in layer l:

βi,` =

{
WeightDistance(i, `), if WeightDistance(i, `) < LayerDistance(`)
0, otherwise

(6)

Note that there is a shift only in the cases where the weight distance is smaller than the layer
distance; the shift is used to compensate cases in which weights are negligible with respect to other
weights in the same layer.

CoLN is summarized by algorithm Algorithm 1.
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Algorithm 1 CoLN

Input A. A description of the common model consisting of: (i)L layers;(ii)m, a vector containing
the number of weights per layer. B. The weights of all host models: wi,`,d, i ∈ [1,m[`]], d ∈
[1, D], ` ∈ [1, L]; C. r: vector of training data size rates of per host site.
Output Weights of the combined model W

1: procedure CoLN(D,L,m,w, r)
2: for ` = 1 to L do
3: Compute LayerDistance(`)
4: for i = 1 to m[`] do
5: Compute WeightDistance(i, `)
6: for d = 1 to D do

7: w[i, `]=

D∑
d=1

w[i, `, d] ∗ ec·rh

8: if (WeightDistance(i, `) ≤ LayerDistance(`)) then
9: w[i, `] += WeightDistance(i, `)

10: return W

3 Results

The methods and parameters of CoLN are detailed in Section 2. All experiments were performed
with the method’s hyper-parameters determined in a series of calibration experiments described
in the supplementary material.

We have applied CoLN to two sets of experiments. The aim of the first set was to estimate the
accuracy and robustness of CoLN for different types of neural network architectures (Multi-layer
feed forward, Convolutional, Recurrent LSTM), different number of local hosts and distribution
biases. The aim of the second set of experiments was to compare CoLN’s performance with
Federated learning approaches.

In all experiments, we also trained a “centralized model”, using the combination of all local
datasets. The performance of this model was used as the “golden standard” for comparison. In
all cases models were initialized with the same random values before the first training.

3.1 Validation experiments

3.1.1 Breast Cancer Data

The goal of this experiment was to test if the CoLN combination method can compensate for
distribution biases in the local models that create noise. For this, we used a feed forward Neural
Network with 785 parameters (details of the architecture are explained in the supplementary
material).

In this experiment, we used breast cancer anonymized patient data from the University of Wis-
consin Hospitals [30, 31, 32]. We split the original data, which did not include gender information,
into two “virtual hospitals,” Dataset1 and Dataset2. Then we added to the original data an arti-
ficial gender parameter, in such a way as to introduce an opposite gender bias in cancer data for
each virtual hospital. In Dataset1, the data for patients with malignant cancer was predominantly
labeled as “male”, and data for patients with benign cancer was predominantly labeled as “fe-
male”. Data in Dataset1 contains information from 230 patients with cancer, 115 malignant and
115 benign. Of the 115 malignant cancer patients 80% were labeled as male and 20% as female.
In Dataset2, the distribution is skewed in the other direction. It contains data from 354 other
cancer patients, 177 malignant and 177 benign. Of the 177 malignant cancer patients, 80% were
labeled female and 20% male. Test data was balanced, containing 136 samples, corresponding to
68 malignant cancer and 68 benign cancer, with gender being assigned randomly with 50% for
each gender in each class.
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We performed 30 rounds of combination. Fig. 5 shows the results achieved by each model and
by a centrally trained model using all 490 samples; test results for the centrally trained model
were computed only once.

Figure 5: Comparison of accuracy obtained in breast cancer data with distributional bias. Model1
identify models trained using Dataset1 and Model2 identify models trained using Dataset2. In
Round 0 the combined model used only the common initial random parameters, Model1 and
Model2 used parameters that resulted from the first round of training using local data. In sub-
sequent rounds, Model1 and Model2 were the result of another round of training with local data
and the combined model used parameters combined in the previous round.

The CoLN Combination reached 95.58% accuracy in the second round, maintaining this value
in the remaining rounds with few oscillations. Local models Model1 and Model2 were initialized
with the same random weights of the synchronizing model, with Model1 achieving initial accuracy
61.77% and Model2 77.94%. Each local model at each round was trained using with 50 epochs.
The centralized model achieved 95.59% accuracy after 200 epochs.

It is important to note that, even though, after the first round, local models are initialized with
the weights obtained from CoLN in the previous round (thus with a model of higher accuracy),
after retraining with local data only, the result is a model of lower accuracy. Local models never
achieve the same accuracy as CoLN. This is expected as, at each round, the models are re-trained
with biased data and incorporate the apparent dependency between gender and cancer. However,
CoLN combined learning model does not seem to be affected by this bias, and oscillates with
very little variation near its upper bound, which corresponds to almost the same accuracy as
the centrally trained model. Detailed results for each round are described in the supplementary
material.

3.1.2 Covid-19 Data

In the second experiment we used a covid-19 dataset consisting of 92 different clinical and labora-
tory tests from 5466 patients admitted to the Albert Einstein Hospital of São Paulo in 2020 [33].
Clinical data from tests were used to predict whether the patient would be positive for covid-19, as
mesured by a SARS-CoV-2 RT-PCR test. In the prediction task, a feed forward Neural Network
was used containing 1,873 parameters. Details of the models are described in the supplementary
material.

We randomly selected 811 patients for training and 588 for testing. The training set was
randomly partitioned in two sub-sets with different distributions of positive and negative samples:
Dataset1 consisted of 223 positive and 107 negative samples (total 330), and Dataset2 consisted
56 positive and 425 negative samples (total 481). The test dataset was balanced, with 279 positive
and 279 negative cases.

9



We used CoLN in 30 rounds of combination. Again, the centralized model was trained only
once. Results are shown in Fig. 6.

Figure 6: Comparison of accuracy obtained in COVID-19 data with distributional bias, in which
CoLN reaches the 90% accuracy in five rounds, and was followed by Model1 and Model2 in a few
rounds. Model1 identify models trained using Dataset1 and Model2 identify models trained using
Dataset2. In Round 0 the combined model used only the common initial random parameters,
Model1 and Model2 used parameters that resulted from the first round of training using local
data. In subsequent rounds, Model1 and Model2 were the result of another round of training with
local data and the combined model used parameters combined in the previous round.

In this experiment, the centralized model achieved 100% accuracy with 60 epochs. To demon-
strate that CoLN can combine model features, the local training rounds were executed with only
10 epochs, and Model1 and Model2 achieved initial accuracy of around 50%, a result similar to
randomly flipping a coin, and this behaviour was maintained in the next 7 rounds. However, just
after 5 rounds, CoLN already achieved more than 90% accuracy, and the weights of this combined
model were used initial state for both Model1 and Model2. Model1, whose local data was less un-
balanced than Model2, took 10 combination rounds to achieve accuracy above 90%, while Model2
took 15 rounds to reach the same level. This suggests that CoLN is not affected by unbalanced
data, while local models struggle to overcome that deficit even when initialized with more accurate
weights. The results the each round are described in the supplementary material.

3.1.3 Text Sentiment Analysis

In the third experiment we used used a Long-short term (LSTM) recurrent neural network [34],
for the problem of textual sentiment analysis, this time using five local hosts. Training for each
host used as many epochs as necessary to achieve minimum loss. The input consisted of a dataset
of product reviews containing a numeric evaluation of products (1–5), an evaluation text and
a binary-valued field indicating if the author of the review would recommend the product to a
friend [35]. The neural network used the product review text to predict the recommendation. We
used a single-layer LSTM with a total of of 105,060 parameters. Details of the architecture are
described in the supplementary material.

The training set consists of 11890 evaluation texts and the testing set consisted of another
5096 evaluation texts. The training dataset was unevenly split among five local subsets one for
each local model: Dataset1 (3304 texts), Dataset2 (2726 texts), Dataset3 (4436 texts), Dataset4
(4582 texts) and Dataset5 (1938 texts). The results are depicted in Fig. 7.

Here the centralized model achieved 60.85% accuracy after 180 epochs and the CoLN combina-
tion reached 61.02% accuracy in the 13th round. Local models also stabilized, but lower accuracy
levels (between 57 and 59%).
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Figure 7: Comparison of accuracy obtained for product review sentiment analysis employing
LSTM models, with 5 distinct local hosts with distinct dataset sizes. CoLN reach stable accuracy
in three rounds. Model1 identify models trained using Dataset1, Model2 identify models trained
using Dataset2 and so forth until Model5. In Round 0 the combined model used only the common
initial random parameters, Model1 to Model5 used parameters that resulted from the first round
of training using local data. In subsequent rounds, Model1 to Model5 were the result of another
round of training with local data, but initializing the parameters with those obteind by the CoLN
combination of the previous round, while the combination model results used the parameters from
the combination in the same round.

CoLN performed better than all local models, but not by much, as all models performed well,
with differences mostly mirroring the sizes if each local dataset.

3.1.4 Combining Convolutional Models for Image Classification

The goal of this experiment was to test the performance of the CoLN process on a convolutional
neural network (CNN) [36] in the task of multi-category image classification. We designed the ex-
periment so that each of the two local hosts had unbalanced distributions of examples of the target
classification categories. The classification task was performed by a CNN with 1,658,700 param-
eters and an input matrix of 28x28x32. Details of the model are described in the supplementary
material.

We randomly selected 28,000 images from the CIFAR10 dataset [37] in four categories: cat,
frog, car and airplane. Training images were separated in two local datasets: Dataset1 with the
predominance of airplane and car images (4,000 airplane, 4,000 car, 2,000 frog, and 2,000 cat) and
Dataset2 with the predominance of frog and cat images (4,000 frog, 4,000 cat, 2,000 car and 2,000
airplane). The test dataset was a balanced set of 4,000 images, 1,000 of each category (airplane,
car, cat and frog). We trained the centralized model only once with all 28,000 images of the
combined training sets, and we performed 30 rounds of the CoLN algorithm. Centralized training
was peformed in 100 epochs and local training in 50 epochs. The results are shown in Figure
Fig. 8, and the combined accuracy in Figure Fig. 9.

As we can see, Model1 is an “expert” in cars and airplanes and performs even better than the
centralized model over these classes, while Model2 performs poorly on theses categories, with a very
low initial accuracy and only a small improvement with CoLN. Similarly, Model2 is an “expert”
in Cats and Frogs, while Model1 performs poorly on those categories. The CoLN combination,
with respect to each category, achieves an intermediary performance in relation to each “expert”
model, but performs consistently below the centralized model over classes “Airplane” and “Frog”
and achieves an accuracy close to that of the centralized model in classes “Cat” and “Car”.

The joint accuracy over all four classes is shown in Fig. 9, revealing a picture more akin to pre-
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Figure 8: Comparison of classification accuracy for class A: “Car” , B: “Airplane” , C: “Cat” , D:
“Frog” for image classification over CNN models over four image classes.

Figure 9: Comparison of classification accuracy over all four classes of the for image classification
employing CNN models. Model1 was trained using Dataset1, a set of images biased towards
cats and dogs, Model2 was trained using Dataset2, a set of images biased towards planes and
automobiles. In Round 0 the combined model used only the common initial random parameters,
Model1 and Model2 used parameters that resulted from the first round of training using local
data. In subsequent rounds, Model1 and Model2 were the result of another round of training with
local data and the combined model used parameters resulting from the CoLN combination of the
previous round.

vious results. The centralized obtained the accuracy level of 81.65%, and CoLN achieves 77.18%,
in the first round of combination, while local model’s performance was 73.28% and 72.73%. CoLN
obtains 78.85% in the second round and oscillates around this value (±0.03%) in the following
rounds. The results show that clearly shows that CoLN ouperforms local models, approaching the
ideal centralized performance.
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3.2 Comparing CoLN with Benchmark Federated Learning Methods
over Image Classification

In this experiment we compared CoLN with with the federated learning methods using a Convolu-
tional Neural Network Model in an image classification problem using. For this, we used GitHub
implementation of FedMA, FedAvg, and FedProx available at https://github.com/IBM/FedMA,
which was presented at FedMA presentation [28]. We downloaded from CIFAR10 60,000 32x32
color images from of 10 different classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses,
ships, and trucks). From these, we created two ”local” training sets with 25,000 images each and
a test with 10,000 images (1,000 images of each category). The centralized model was trained with
the combined training sets (50,000 images). The results are shown in Fig. 10.

Figure 10: Comparison of combination methods over CIFAR10 image recognition task, employing
two local hosts with fixed data. Five methods took part in the comparison: Centralised, FedMA,
FedAvg, FedProx and CoLN. The bars indicate the final accuracy of each approach, the initial
accuracy values for each of the local models, and the accuracy for the centralized model, trained
with the combined local datasets.

CoLN presented the best performance of all approaches. It achieved higher accuracy (77.8%)
when compared with FedMA (69.4%), FedAvg (72.0%) and FedProx (71.2%) and its final accuracy
was very close to that of the centralized model (77.8% vs 78.0%). Also, CoLN’ns maximum
accuracy of 77.8% was reached in the second round, and other approaches in 6 rounds. All
experiments were executed with 30 epochs and 6 rounds, and centralized in 120 epochs.
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4 Conclusion

Combined Learning of Neural network weights (CoLN) is a method that addresses privacy issues in
neural network machine learning: only model parameters and local dataset sizes are communicated,
no data is ever exchanged. It uses a efficient mathematical formulation to combine a set of identical
neural models whose parameters are autonomously trained over local data that is never shared.
Only local model parameters and information on local dataset sizes are transmitted over the
network by the collaborating hosts, maintaining privacy over individual data. Our experiments
in different Neural Network architectures have shown that CoLN’s combined models improve on
local host performance, converges on small number of rounds, and approximates the ideal situation
where all data is available for training single, centralized model (from two to 6 steps, depending on
the number of categories in the classification). CoLN also avoids several issues common to other
distributed learning algorithms [25, 26, 28]; it requires very little data traffic over the network,
makes no assumption on data distribution, and is resilient to local data size imbalance.

Finally, CoLN compares favourably to other forms of federated learning models, exceeding
their performance on a standard benchmark.

CoLN demonstrates a new direction for future work by combining the models in a decentralized
way using new mathematics capable of offering practical benefits privacy, with security, as well
as the ability to increase model accuracy global without the need for each iteration to add new
datasets and clients. Experiments have shown that balanced learning can be a practical method
that allows collaborative research with datasets at each institution, mainly especially when there is
little data, significantly impacting research centers smaller companies, start-ups and collaborative
research across international borders. Experiments and supplemental materials are available on
the github website: https://github.com/AlineIoste/CoLN
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