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Abstract

Generative AI tools hold promise to increase human productivity. This paper presents re-
sults from a controlled experiment with GitHub Copilot, an AI pair programmer. Recruited
software developers were asked to implement an HTTP server in JavaScript as quickly as
possible. The treatment group, with access to the AI pair programmer, completed the task
55.8% faster than the control group. Observed heterogenous effects show promise for AI
pair programmers to help people transition into software development careers.

Introduction

Artificial intelligence (AI) applications hold promise to increase human productivity. A va-

riety of AI models have demonstrated human-level capabilities in fields ranging from natural

language understanding to image recognition [Zhang et al., 2022]. As these systems are de-

ployed in the real-world, how do they change labor productivity? While there is a growing

literature studying perceptions of AI tools, how people use them, and their implications for

security and education [Nguyen and Nadi, 2022, Barke et al., 2022, Finnie-Ansley et al., 2022,

Sandoval et al., 2022] there has been little research on productivity impacts of AI-powered tools
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in professional contexts, cf. [Mozannar et al., 2022, Vaithilingam et al., 2022, Ziegler et al., 2022].

The potential productivity impacts of AI have major implications for the labor market and

firms, including changes in employment, skills, and firm organization [Raj and Seamans, 2018,

Agrawal et al., 2019].

This paper studies the productivity effects of AI tools on software development. We present

a controlled trial of GitHub Copilot, an AI pair programmer that suggests code and entire func-

tions in real time based on context. GitHub Copilot is powered by OpenAI’s generative AI

model, Codex [Chen et al., 2021]. In the trial, programmers were tasked and incentivized to

implement an HTTP server in JavaScript as quickly as possible. The treated group had access

to GitHub Copilot and watched a brief video explaining how to use the tool. The control group

did not have access to GitHub Copilot but was otherwise unconstrained, i.e., they were free to

use internet search and Stack Overflow to complete the task.

The performance difference between treated and control groups are statistically and practi-

cally significant: the treated group completed the task 55.8% faster (95% confidence interval:

21-89%). Developers with less programming experience, older programmers, and those who

program more hours per day benefited the most. These heterogeneous effects point towards

promise for AI-pair programmers in support of expanding access to careers in software devel-

opment.

The paper proceeds as follows. We first describe the design of the controlled trial and

provide summary statistics. We then present the results. We conclude by a discussion on im-

plications of the study for productivity research on AI-powered tools, its limitations, and future

research directions on the broader economic impacts of AI-driven productivity.
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Study Design

We conducted a controlled experiment to measure the productivity impact of using GitHub

Copilot in programming tasks. The experiment began on May 15, 2022 and ended on June 20,

2022, right before GitHub Copilot became generally available. We recruited 95 professional

programmers through Upwork, a freelancing platform. Participation in the experiment was

advertised on Upwork as a job posting, looking to recruit freelancer developers. Figures 1 and

2 show (respectively) the job posting and the contract that was sent to participants to sign, in

accordance with Upwork’s policies. Once participants signed the contract, they were randomly

split into control and treatment groups.

Figure 3 shows the instructions sent to each group through email. The treated group was

instructed to watch a 1-minute video introducing them to GitHub Copilot. In addition to the

instructions, they also received an automated email with installation instructions for GitHub

Copilot once granted access to the tool. We verify from telemetry after the experiment that all

participants from the treated group have configured GitHub Copilot and accepted recommenda-

tions other than five who did not finish the sign up and thus started the experiment without the

GitHub Copilot. Both treated and control groups were instructed to complete an entry survey to

provide demographic information such as age, gender, location, and educational background.

Before we began recruitment, we received approval for the study from the Microsoft Research

Ethics Review Board.

Participants were instructed to write an HTTP server in JavaScript—the treatment group

would use GitHub Copilot to complete the task, while the control group would not. Besides the

use of GitHub Copilot in the treated group, participants were unconstrained in their software

development —they could use any sources of information as they normally do, such as internet

search and Stack Overflow.
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We calculated two metrics as a measure of performance for each group: task success and

task completion time. Task success was measured as the percentage of participants in a group

that adequately completed the task. Task completion time was measured as the time from start

to end of the task. Using a standardized task provides us with precise measures of performance

as it is difficult to measure productivity of software developers.

To administer the task, we used GitHub Classroom, a platform for teachers to issue and

grade coding assignments. In this way, we accurately measured the timing and completion for

each participant. The instructions gave participants a link to a particular GitHub Classroom

instance with a single assignment referencing a template repository. When joining the assign-

ment, participants received a personal copy of the template repository, with the task description

(shown in Figure 4) and a skeleton codebase for participants to build upon. The creation date

and time of that personal copy created a timestamp. Each participant’s repository was private

to them and visible to the researchers conducting the experiment—but not to other participants.

We included a test suite in the repository, comprising twelve checks for submission correct-

ness. If a submission passes, all twelve tests we counted are successfully completed. Partici-

pants could see the tests but were unable to alter them.

When participants committed and pushed their changes to GitHub, GitHub Classroom ran

the test suite on their submission and reported the number of passing tests. Participants could

push as often as they pleased, automatically logging a timestamp each time. The time elapsed

between the timestamp of repository creation and the timestamp of the first commit to success-

fully pass all 12 tests was counted as the participant’s task completion time.

The full history of test suite runs is visible on each repository, enabling researchers to ob-

serve partial results for participants that did not fully complete the task. The participants’ final

compensation is calculated based on their time to completion and the scale we had previously

shared with them (shown in Figure 1).
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After participants had completed the task, we sent them the link to an exit survey. We asked

the treatment group how helpful they found GitHub Copilot as they worked on the task, as well

as asked them to estimate how much faster they completed the task compared to how long this

task would have taken them without using GitHub Copilot. We also asked the control group to

estimate the size of the speed gain they would have experienced if they used GitHub Copilot,

after showing them a 1-minute demo video.

Results

A total of 166 offers were sent during the experiment, and 95 were accepted. The 95 developers

were randomly assigned into control and treated groups, with 45 in the treated group and 50 in

control. Thirty-five developers from both the treated and control groups completed the task and

survey. Figure 5 presents the summary statistics of these participants.

Most of the participants are in the age group of 25-34 and come from India and Pakistan.

This group of participants is also characterized by relatively lower income (median yearly in-

come between $10,000-$19,000) compared to US standards but high education level (the ma-

jority have a 4-year degree and above). The group has an average coding experience of 6 years

and, on average, reported spending 9 hours on coding in a working day.

Figure 6 plots the distribution between time to completion between treated and control

groups. Conditioning on completing the task, the average completion time from the treated

group is 71.17 minutes and 160.89 minutes for the control group. This represents a 55.8% re-

duction in completion time. The p-value for the t-test is 0.0017, and a 95% confidence interval

for the improvement is between [21%, 89%]. There are four outliers with time to completion

above 300 min. All outliers are in the control group, however our results remain robust if these

outliers are dropped. This result suggests that Copilot increases average productivity signif-

icantly in our experiment population. We also find that the treated group’s success rate is 7

5



Table 1: Heterogeneous Treatment Effects

Estimates SE t-Stat p-Value

(Intercept) 78.01 67.84 1.15 0.2552
Programming experience (years) 8.23 4.36 1.90 0.0629
Hours of programming per day -11.70 4.74 -2.47 0.0168
Age: 25-44 -74.55 33.52 -2.22 0.0303
Unemployed -35.98 36.33 -0.99 0.3263
Income less than $20,000 0.64 27.47 0.02 0.9814
No college -36.57 32.89 -1.11 0.2711
Language Preference: Java -11.77 33.16 -0.35 0.7240
Language Preference: Python 22.90 42.19 0.54 0.5895

Note: This table presents the heterogeneous treatment effects. The results suggest developer with less program-
ming experience are more likely to benefit from Copilot, similarly for developers with more daily programming
hours and in the age group above 25.

percentage points higher than the control group, but the estimate is not statistically significant,

with a 95% confidence interval of [-0.11, 0.25].

We then investigate whether this effect is heterogeneous across different dimensions includ-

ing experience, employment status, income, education and software language preference. We

assume the treatment effect is a linear function of the covariates of interest. We apply Horvitz-

Thomson transformation in [Athey and Imbens, 2015] (see also [Banerjee and Duflo, 2003] and

[Carneiro et al., 2011])) and then regress the transformed outcome of interest on observables.

The estimates in Table 1 report coefficients from this regression. The results show that less ex-

perienced developers (years of professional coding), developers with heavy coding load (hours

of coding per day), and older developers (developers aged between 25 and 44) benefit more

from Copilot.

We conducted an exit survey with two questions to learn about the experience of subjects.

First, we asked them to estimate how much productivity gain or loss (in percentage term) Copi-

lot provided to them for completing the task. While the control group was not exposed to Copi-
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lot during the task, they were given the tutorial video before answering this question so that

they are aware of the features of Copilot. Figure 7 presents the distribution of the self-reported

productivity gain estimates from the control and treated groups. On average, participants in

both treated and control groups estimated a 35% increase in productivity, which is an underes-

timation compared with the 55.8% increase in their revealed productivity.

In the second question, participants were asked the highest monthly price at which they

would be interested in getting notified about the release of GitHub Copilot. The intention is to

learn about developers’ willingness to pay for Copilot as the answer to this question provides

an upper bound for the developers’ willingness to pay. Figure 8 presents the distribution of the

irrelevant price separated for the control and treated groups. The average irrelevant price for the

treated group is $27.25, and the average irrelevant price for the control group is $16.91, both per

month. The difference is statistically significant at the 95% level. This result provides indirect

evidence that treated group benefited from Copilot during their task as their willingness to pay

is significantly higher than the control group.

Discussion

This paper presents evidence on the productivity effects of generative AI tools in software de-

velopment. To the best of our knowledge, it is the first controlled experiment to measure the

productivity of AI tools in professional software development. Our results suggest that Copilot

has statistically and practically significant impact on productivity: the treated group that has

access to GitHub Copilot was able to complete the task 55.8% faster than the control group.

Further investigations into the productivity impacts of AI-powered tools in software devel-

opment are warranted. This study examines a standardized programming task in an experiment

to obtain a precise measure of productivity, instead of a task where developers collaborate on

large projects in professional proprietary and/or open-source settings. Productivity benefits may
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vary across specific tasks and programming languages, so more research is needed to understand

how our results generalizes to other tasks. Finally, this study does not examine the effects of

AI on code quality. AI assistance can increase code quality if it suggests code better than the

programmer writes, or it can reduce quality if the programmer pays less attention to code. The

code quality can have performance and security considerations that can change the real-world

impact of AI.

The heterogeneous effects identified in this study warrant close attention. Our results sug-

gest that less experienced programmers benefit more from Copilot. If this result persists in

further studies, the productivity benefits for novice programmers and programmers of older

age point to important possibilities for skill initiatives that support job transitions into software

development.

The economic impacts of these models also warrant further research [Manning et al., 2022],

with particular attention on their implications for labor market. In 2021, over 4.6 million people

in the United States worked in computer and mathematical occupations,1 a Bureau of Labor

Statistics category that includes computer programmers, data scientists, and statisticians. These

workers earned $464.8 billion or roughly 2% of US GDP. If the results of this study were to be

extrapolated to the population level, a 55.8% increase in productivity would imply a significant

amount of cost savings in the economy and have a notable impact on GDP growth. It is, as of

yet, unclear how such gains would be distributed and how job tasks would change to incorporate

AI-powered developer tools. It is important to consider such impacts and to begin research on

these implications at the outset [Klinova and Korinek, 2021].

1https://www.bls.gov/oes/current/oes150000.htm
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Figure 1: Upwork job posting
Note: Job posting on Upwork starting May 25th 2022. The posting includes the task description, skill requirements
and budget information.
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Figure 2: Upwork contract
Note: The contract sent to participants through Upwork. Upon accepting the contract, participants were random-
ized into control and treatment groups and given instructions for the task.
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Figure 3: Instruction email to participants

Note: Email instructions sent to participants in the treatment (top) and control (bottom) groups.
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Figure 4: Participants’ view of the task description
Note: The task description participants saw in the index.js file in the repository that was automatically created for
them by GitHub Classroom.
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Figure 5: Summary statistics of the experiment participants
From left to right on each row see the following distributions: Participant age; Number of different languages used
in the last 2 years; Level of education; Employment status; Geographical location; Yearly income; Programming
experience; Time spent coding daily.
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Figure 6: Time to task completion

Note: Distribution of time to task completion between treated (blue) and control (orange) groups

17



Figure 7: Self-estimated productivity gain
Note: This graph shows the distribution of the estimated productivity improvement when using Copilot. Blue
represents the estimation from the treated group and orange represents the estimation from the control group.
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Figure 8: Distributing of irrelevant price
Note: This graph shows the distribution of the irrelevant price between the treated (blue) and control (orange)
groups.
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