
Tool Documentation Enables Zero-Shot
Tool-Usage with Large Language Models

Cheng-Yu Hsieh1†, Si-An Chen2†, Chun-Liang Li3, Yasuhisa Fujii4,
Alexander Ratner1, Chen-Yu Lee3, Ranjay Krishna1∗, Tomas Pfister3∗

1University of Washington, 2National Taiwan University,
3Google Cloud AI Research, 4Google Research

cydhsieh@cs.washington.edu

Abstract

Today, large language models (LLMs) are taught to use new tools by providing a
few demonstrations of the tool’s usage. Unfortunately, demonstrations are hard to
acquire, and can result in undesirable biased usage if the wrong demonstration is
chosen. Even in the rare scenario that demonstrations are readily available, there is
no principled selection protocol to determine how many and which ones to provide.
As tasks grow more complex, the selection search grows combinatorially and in-
variably becomes intractable. Our work provides an alternative to demonstrations:
tool documentation. We advocate the use of tool documentation—descriptions for
the individual tool usage—over demonstrations. We substantiate our claim through
three main empirical findings on 6 tasks across both vision and language modalities.
First, on existing benchmarks, zero-shot prompts with only tool documentation
are sufficient for eliciting proper tool usage, achieving performance on par with
few-shot prompts. Second, on a newly collected realistic tool-use dataset with
hundreds of available tool APIs, we show that tool documentation is significantly
more valuable than demonstrations, with zero-shot documentation significantly
outperforming few-shot without documentation. Third, we highlight the benefits
of tool documentations by tackling image generation and video tracking using
just-released unseen state-of-the-art models as tools. Finally, we highlight the
possibility of using tool documentation to automatically enable new applications:
by using nothing more than the documentation of GroundingDino, Stable Diffu-
sion, XMem, and SAM, LLMs can re-invent the functionalities of the just-released
Grounded-SAM [23] and Track Anything [70] models.

1 Introduction

Today, large language models (LLMs) summon the imagery of a craftsman: when asked to solve a
complex task, they decompose the task into simpler sub-tasks and assemble the best possible tools to
tackle each sub-task [51, 72]. For example, consider the complex task of question answering given
the image in Figure 1. To answer “whether the two magnets will attract or repel each other”, the LLM
needs the following: it needs to identify the positions of the magnets in the image, extract general
knowledge explaining that “opposite (same) poles attract (repel)”. Just like a competent craftsman
who knows what their tools are capable of, an LLM with such knowledge of its tools will be able
to invoke one tool (e.g. its Text Detector) to identify the north and south poles and a second tool
(e.g. Knowledge Retriever) to extract pertinent background knowledge about magnetic forces. But
how does an LLM know which tool is capable of what?

†Work done as student researchers at Google Cloud AI Research.
*The authors contributed equally to this work.

Preprint. Under review.

ar
X

iv
:2

30
8.

00
67

5v
1

 [
cs

.C
L

]
 1

 A
ug

 2
02

3

Figure 1: Example workflow of tool-using with LLMs to solve a multi-modal question answering
task. Given the input question with an image, the LLM selects appropriate tools from the tool set
and generates an execution plan to answer the question correctly. Here, the LLMs outlines a plan
to first use Text Detector to understand the positioning of the magnets in the image, then leverage
Knowledge Retriever to obtain relevant background knowledge about magnets, then finally generate
the solution based on the previous steps.

Currently, LLM tool-usage provides LLMs with few-shot demonstrations (demos) of what its tools can
do, hoping that these demos will help generalize the model’s behavior to newer complex tasks. This
process has been rather successful so far. These few-shot demos contain one or several exemplars
of <input, output> mappings [68] on given instructions and their corresponding tool-use plans
(illustrated in Figure 2). LLMs are expected to find patterns within these demos and generalize
them for new tasks. On textual tasks, LLMs have presented with demos of calculators [15, 47, 56],
Python interpreters [13, 18] and search engines [62, 43, 50, 56, 40] can perform logical and arithmetic
operations to obtain more accurate and factual knowledge. On visual tasks, LLMs with demos of
pretrained vision models can do complex visual reasoning [37, 40, 57, 16, 73], can generate and
even edit images [19, 9]. On embodied robotic tasks, LLMs can similarly be used to reason and
plan [75, 21, 1, 17].

We argue that this reliance on demos in tool using is unnecessary in some cases, and might be even
limiting. In fact, recent work finds that LLMs tend to be sensitive to demos [81], and carefully
selecting demos is needed to avoid biasing or overfitting to a particular usage [12]. This leads to the
follow-up question: how do we choose which few-shot demos to use? There are no known principled
approaches to select demos without human intervention or to even efficiently enable humans to choose
or create them. To make the matter worse, when we scale up the number of tools that LLMs have
access to, this few-shot selection process becomes combinatorially intractable. Just as a craftsman
doesn’t need to see a new tool being demonstrated and can instead discern their capabilities from
reading a user manual for the tool, we seek to enable LLMs to learn how to use tools without seeing
any demos.

Our work provides an alternative to demonstrations: tool documentation (doc). Similar to the
metaphor of a manual indicating an physical tool’s capabilities, a software tool’s docs outline what
the tool can and cannot be used for and how to invoke it. Docs provide relatively neutral instruction
about the tools’ functionalities and how individual tools should be used (illustrated in Figure 2), and
they are usually conveniently available through the creation of the tools organically. Intuitively, just
as the craftman leans to use a new tool by reading the manual, we provide LLMs with README files
when encountering a new tool/repository. With docs, an LLM may not necessarily need demos to use
a new tool.

Distinct from existing work that rely mostly on few-shot demos for tool-learning, in this work,
we study whether LLMs can instead solely rely on docs to use tools. We study the tool-learning
performances of LLMs as we include or exclude docs, and vary the number of demos from few-shot
down to zero-shot. We conduct the experiments on 6 tasks across vision and text modalities. Our
experiments show that:

• Surprisingly, when provided with tool docs, LLMs’ zero-shot tool-using performance is on par
or even better than their few-shot counterparts, showing that including docs is an effective way
to sidestep the few-shot demos needed.

2

Demonstration: Below are examples mapping a problem to a tool-use plan.

● Question: Which property do these three objects have in common?

Tool-use Plan:

Text Detector → Knowledge Retriever → Solution Generator

● Question: Which material is this jar made of?

Tool-use Plan:

Image Captioner → Solution Generator

DEMO

Chips Pretzel Fries

Demonstration

Description: examples of questions and the tool-use plan.
● Question:

Which property do these objects have in common?

Tool-use Plan:
Text Detector → Knowledge Retriever → Solution Generator

● Question: […]
Tool-use Plan: […]

● Question: […]
Tool-use Plan: […]

Documentation

Description: available tools and their functionalities.
● Text Detector:

It detects the text in an image […]
● Knowledge Retriever:

It retrieves relevant knowledge […]
● Search Engine:

It searches the web for relevant info […]
● Image Captioner:

It generates a caption for an image […]
● …

Figure 2: Two types of knowledge for prompting LLMs for tool-use: Demonstrations (demos) and
Documentations (docs). Demos consist of <input, output> pairs on input instructions and their
corresponding output tool-use plans. They require manual efforts for careful curation on every new
task, and the model performance can be sensitive to which demos are used [81, 12]. Many demos
may also be necessary for good coverage when the number of tools scales up. On the other hand,
docs provide descriptions for the tool functionality, and are usually organically available for tools.

• Building on the above finding, we relax the few-shot demo constraint, and show that we can
efficiently scale up to a significantly larger tool set, on a newly collected API usage dataset, by
simply providing the LLMs with docs.

• We show how to seamlessly add new tools along with their docs to a tool set for LLMs to
solve unseen tasks on image editing and video tracking, all without any further demos in a
plug-and-play manner.

• Finally, with unseen tools developed recently as building blocks, we showcase LLMs are
capable of re-inventing popular yet even more recent works Grounded-SAM [23] and Track
Anything [70], which suggests a potential from zero-shot tool usage to automatic knowledge
discovery.

2 Related work

LLMs with retrieval augmentation and tools. In spite of the remarkable achievements demon-
strated by LLMs, the performance can be further boosted with external tool usages to be more
accurate, efficient or versatile for wider applications. The authors in [51] detailed the cognitive
origins, the paradigm shift of foundation models, and the complementary roles of tools and models to
LLMs. The example tool usage starts from knowledge retrieval [6, 20, 33, 74, 77] and expands to
search engine [43, 31, 32, 62, 58, 46, 40], QA system [56], calculator [15, 47, 56], the Python inter-
preter [18, 13, 65, 24, 46, 16], simulation engines [37], machine learning models [57, 73, 69, 40, 16],
or even tools created by LLMs [11]. Pioneer works of LLMs with tools often rely on human su-
pervision [62, 31] or additional self-supervised learning techniques [56], which pose challenges for
practical plug-and-play usage. Recent advancements eliminate additional training by using example
demos in the prompt [19, 75, 73, 57, 40, 46]. Our work further simplifies prompt design by only
leveraging documentation for individual tools, while maintaining competitive performance.

Planning with LLMs. Language models are proven to have potential to conduct planning for
solving complex tasks or decompose the complex tasks into sub-problems when prompted properly.
[21, 22] retrieve demos at test-time with large knowledge space coverage to generate admissible
actions. [28] relies on pre-designed demos for task decomposition. Similarly, recent works of tool
using with LLMs leverage the example demonstrations of solving examples tasks with a planning
of tools [13, 19, 75, 73, 57, 40, 46]. However, crafting demos of interactions between tools may be
challenging in practice when the number of tools surges. Concurrent work [48, 52, 71] tackles the
challenge by using strong LLMs such as GPT-4 [45] to create large instruction-following datasets
that cover diverse instructions and corresponding tool-use plans, typically through mechanisms like

3

self-instruct [66]. The resultant datasets can then be used to finetune and equip other LLMs (e.g.,
LLaMA [63] and OPT [79]) the ability to use a large collection of tools for unseen instructions. On
the other hand, our work showcases the potential for LLMs to utilize any unseen new tools by reading
their tool docs.

Demonstration and Documentation. Learning from demonstration is popular in reinforcement
learning [49, 4, 44, 55]. [8] propose the in-context learning algorithm for efficient and effective
downstream task adaptations through showing example demonstrations. Inspired by the success,
most of existing LLM tool-using works rely on few-shot demonstration [13, 19, 75, 73, 57, 40, 46].
However, [12] show that having more example demonstration might counter-intuitively degrade
performance, and a careful selection might be needed. [35] proposes a retrieval method for demo
selection, which implicitly requires a larger set of examples to be selected. Using documentation
to improve algorithms is relatively under-explored. [7, 82] propose document reading algorithms
for specific games. [83] introduced DocPrompting, which employs a trained retriever on the given
training data to boost code generation by retrieving relevant documents. In this work, we take a step
towards exploring the zero-shot tool planning in LLMs solely with the aid of documentation, and
investigate a wide range of diverse tasks from language to vision domains. While [64, 42] showcase
pure zero-shot planning capability of LLMs, they do not study either the tool usage or the unseen
scenarios to the language models. ViperGPT [16] is a concurrent work, which focuses on visual
programming in Python and uses function implementations and specifications as documentation.
Lastly, while AutoGPT [3] provides several demos that showcase the LLM’s capability of tool
using through documentation reading, our study focuses on a systematic exploration ranging from
real-world use cases to academic benchmarks.

3 Experimental setup

3.1 General workflow

We follow the general framework of tool-using with LLMs in [51], which encompasses many of
the recent works [75, 27, 19, 57, 73, 69, 40]. Specifically, given a natural language instruction, an
LLM planner generates a program to be sequentially executed where each step of the program may
rely on using tools selected from a tool set. After the program is generated, it is then executed
by an environment which finally returns the execution results. Here, the program extends beyond
conventional coding practice [76, 53, 25] and is more closely associated with automata theory [59]:
a set of instructions of automations (e.g. tools in our case). Therefore, the tool set can be libraries
with specific programming languages (e.g. Python), or general computation with properly defined
input-output, such as trained models, API calls, and beyond.

3.2 Tool-use prompting methods

As discussed in Section 1, two main types of information are considered in prompting LLMs
for tool-using plans: demonstrations (demos) and documentations (docs). Demos showcase how
tool interactions can accomplish specific tasks, while docs describe individual tool functionalities
without task-specific ties as shown in Figure 2. In the experiment, we explore combinations of
including/excluding docs and demos in prompts, as well as varying numbers of demos.

3.3 Evaluation tasks

We conduct our experiments on 6 tasks across multiple modalities with a variety of tool sets. We
describe the setup and the tool sets for each task below. Except for specific cases where it is explicitly
specified, the LLM planner is ChatGPT (gpt-3.5-turbo).

Multi-modal question answering on ScienceQA. ScienceQA [39] consists of multi-modal multiple-
choice science questions that requires language and visual understanding as well as domain-specific
knowledge to answer correctly. On ScienceQA, we follow the setup used in Chameleon [40] and
employ the same tool set with 7 tools, such as the search engine and the image text detector.

Tabular math reasoning on TabMWP. TabMWP [41] is a math reasoning dataset with various
forms of tables. It requires a model to understand structured or domain-specific tables, and utilize the

4

Zero Shot
● llmcloud firewall allow my_vm --port

8000 --protocol tcp [Hallucination]
● touch my_file
● scp -P 8000 /path/to/my_file

user@server_ip:~ [Wrong command]
● [Missing topic creation]
● llmcloud publish-message --project

PROJ --message "Hi" [Hallucination]

Documentation
● llmcloud comp firewall-rules create

NAME --allow tcp:8000
● touch my_file
● llmcloud comp scp --port 8000

my_file my_vm:./
● llmcloud pubsub topics create TOPIC
● llmcloud pubsub topics publish PROJ

--message "hi"

Few Shot
● llmcloud comp firewall-rules

create NAME --allow tcp:8000
● touch my_file
● llmcloud comp scp --P 8000

my_file my_vm:./ [Wrong flag]
● [Missing topic creation]
● llmcloud pubsub topics publish

PROJ my-topic --message "Hi"

Question:
● Here is a new cloud service called LLMVM, which provides its

own SDK CLI tool (llmcloud).
● Create a firewall allowing port 8000. Please touch a file

my_file then copy it to server with port 8000.
● Last, please publish a message “Hi” to the project.

Answer (in GCP)
● gcloud compute firewall-rules create NAME

--allow tcp:8000
● touch my_file
● gcloud compute scp --port 8000 my_file my_vm:./
● gcloud pubsub topics create TOPIC
● gcloud pubsub topics publish PROJ --message "hi"

Figure 3: The new LLM Cloud Platform command-line toolkit, which is an unseen toolset to existing
LLMs based on real-world Google Cloud command-line tools through renaming.

information to answer corresponding math questions. On TabMWP, we also follow Chameleon [40]
with the same tool set with 9 tools, such as program generator and column lookup.

Multi-modal reasoning on NLVRv2. NLVRv2 [60] requires the model to verify whether a statement
is true on a pair of images, requiring compositional understanding of both texts and images. On
NLVRv2, we follow the setup used in Visual Programming (VisProg) [19] with 20 vision modules
(tools) for image understanding and manipulation. Since VisProg only relies on few-shot demonstra-
tions and does not utilize documentations for the modules. We generate the documentation for each
module by including descriptions on the functionality of the module and the function signature. We
provide the full documentations we use for each module in the appendix.

Unseen API usage on a newly collected dataset. Existing benchmarks used in literature come
with a limited set of tools. To explore real-world use cases involving a large number of tools, we
collect a new benchmark called the LLM Cloud CLI that consists of 200 commands representing the
functionalities of the Google Cloud Platform (GCP) command-line interface (CLI). Each command
in our CLI is renamed from its corresponding GCP command, preserving the semantics and logic
of the original tools, while being unseen to the language models. For instance, the command
gcloud compute create NAME , responsible for creating a virtual machine, is renamed to be
llmvm compute make NAME . The renaming conventions also allow us to utilize authentic GCP
examples as few-shot demos and leverage the corresponding GCP documentation. The benchmark
comprises 50 questions, each focused on creating and configuring specific cloud services using
command-line tools. Each question requires at least two commands to complete the task. We show
an example in Figure 3, and include more in appendix.

Due to the length constraints of the LLM we use, we cannot fit documentation of 200 tools in a single
prompt. Therefore, we employ a simple TF-IDF search using the questions as queries to retrieve the
most relevant documentations and truncate them to fit within the prompt length. More details can be
found in the appendix.

Image editing with natural language. We consider image editing as a form of qualitative evaluation.
This process calls for the model to plan and use different vision modules to handle complex natural
language instructions. For instance, to execute an instruction like "replace the red bus with a green
bicycle", the model must localize the red bus, generate its segmentation mask, and then inpaint
the masked area. We use the tool sets from VisProg. Unlike VisProg, which depends on few-shot
demonstrations, our model only looks at the module documentation. We further include the recently
released image understanding works, Segment Anything (SAM) [30] and Grouding DINO [38] to
expand the tool set to test the zero-shot capability on the new and unseen tools in a plug-and-play
fashion.

Video tracking. Video tracking is also utilized in this study as a qualitative evaluation. This task aims
to acquire the masks of a tracked object in each frame of a video, necessitating the deployment of
processes such as object localization, segmentation, and tracking. In addition to SAM and Groudning
DINO, we incorporate the documentation of an unseen object tracking module, Xmen [14] into the
VisProg framework with the aim to showcase the model’s ability to adapt and employ new tools
without the need for explicit demonstrations again on a different task.

5

Figure 4: Tool-using performance with gpt-3.5-turbo on different benchmarks, which covers
from langauge to vision modalities. We report results with and without documentation (doc) and
demonstations (demo), and their combinations. Clearly, with documentation only (upper-left blue
dot) shows competitive performance across all datasets.

4 Empirical findings

We showcase the importance of tool documentation in three-fold: First, we show that tool documen-
tations reduces the need of demonstrations (Section 4.1). Second, based on the finding, we further
show that relying on documentation rather than demonstrations provides a more scalable solution
to equip LLMs with a large number of available tools (Section 4.2). Finally, we show that with
tool documentations alone, LLMs are able to comprehend and utilize most recent vision models to
accomplish impressive results on image editing and video tracking tasks, on which existing results
are achieved either with human-crafted demos or predefined procedures (Section 4.3).

4.1 Documentations sidestep the need for demonstrations

In this section, we show how tool documentations reduce the need of demonstrations. We present the
findings on three datasets: ScienceQA, TabMWP, and NLVRv2. We evaluate the model performance,
with and without tool documentations, across varying number of demonstrations (demo) on each
dataset.

In Figure 4, we see that when provided with tool docs, the model is able to maintain stable performance
as we strip away the number of demos used. In fact, without using any demos (i.e., 0-shot), the
model is able to achieve on par performances to using 16-shot on TabMWP, and using 12-shot on
NLVRv2. On ScienceQA, the model can even achieve better performance solely with docs compared
to additionally using 10-shot demos. On the other hand, without tool docs, the model performance is
very sensitive to the number of demos used. As we decrease the number of demos, we see significant
performance drop on all three datasets. This highlights the importance of tool docs and shows that it
provides an effective way to reduce the reliance on demos. In Table 1, when compared to existing
baseline methods, we also see that with doc, even 0-shot can perform very competitively.

By sidestepping the need for demos, we are able to alleviate the efforts needed to carefully curate
these demos. For example, aligned with recent studies [81, 12], we observe in Figure 4 that the model
performance is sensitive to which demos are used, shown by the large performance variances under
5-shot on ScienceQA and 2-shot on NLVRv2.

4.2 Documentations enable efficient scaling on tool-using

The findings in Section 4.1 show that one can in fact reduce the reliance on few-shot demos with tool
docs. By relaxing this constraint, we study whether tool docs enables a more scalable way to equip
LLMs with a large number of tools, wherein few-shot demos can specifically fall short on covering
limited tool-use cases. We present our findings in this section on the newly collected LLM Cloud
CLI dataset with 200 available tools.

Qualitative walk-through result. Figure 3 serves as a qualitative example illustrating the limita-
tions of the LLMs with different information. As expected, zero-shot LLM successfully identifies and
responds to the touch command, which is familiar and well-known. However, when faced with the

6

Table 1: Comparisons to existing baseline methods on different benchmarks. We follow [40, 19]
to select the beasline methods for each benchmark task. We see that 0-shot with doc performs
competitively, outperforming CoT and PoT on ScienceQA and TabMWP. On NLVRv2, ViLT-NLVR
is finetuned on the dataset, while the LLM performs in a zero-shot fashion.

Benchmark Methods

CoT [67] without doc (0-shot) with doc (0-shot)

ScienceQA 78.54 78.25 79.91
PoT [13] without doc (0-shot) with doc (0-shot)

TabMWP 89.28 84.13 92.69
ViLT-NLVR [29] without doc (0-shot) with doc (0-shot)

NLVRv2 76.30 0.00 63.40

Figure 5: Command planning of LLM Cloud Platform CLI with and without documentation (doc)
and demonstations (demo), and their combinations. Few-shot demonstration without documentation
results in unsatisfactory performance due to low coverage of large number of tools, while reading
documentation significantly boosts the performance.

unseen LLM-Cloud command lines, the zero-shot LLM fails to generate accurate responses involving
these unfamiliar tools due to its lack of knowledge regarding their syntax and usage.

While few-shot demonstrations have the potential to enhance model performance, it is important
to acknowledge that the coverage of these demonstrations is limited due to the vast number of
command-line tools. Consequently, certain commands or flags may not be adequately covered. In
Figure 3, although we observe data copying is commonly appeared the few-shot examples, however,
the model encounters difficulties in correctly configuring the less common flag --port , instead
hallucinating the use of -P based on familiarity with the scp -P command in Linux.

Conversely, in the same example illustrated in Figure 3, by solely utilizing the provided documentation,
the language models not only successfully discern the steps required for utilizing tools (such as a
hidden step of creating a topic before sending messages), but also possess the ability to accurately
configure flags (e.g., --port) by leveraging information extracted from the documentation.

Quantitative comparisons. We calculate the command-line level F1 score of each example and
report the average F1 across 50 examples. Figure 5 showcases the performance of various LLMs in the
zero-shot setting, where they have no prior exposure to the LLM-Cloud command-line tools we create.
As anticipated, all zero-shot LLMs demonstrate low F1 scores. Zero-shot text-davinci-002
achieves an F1 score of 0.02, while the gpt-3.5-turbo model achieves a slightly higher score of
0.13. The improved performance of the gpt-3.5-turbo model can be attributed to better handling
of common Linux commands, such as touch . As mentioned in quantitative comparison, few-shot
demos improve upon zero-shot, but still fail on uncovered commands or flags in the demo. Therefore,
the best few-shot demo in text-davinci-002 and gpt-3.5-turbo are only with 0.05 and 0.19
F1 scores respectively. On the other hand, LLM with documentation boosts the performance by a
large margin to be 0.37 in text-davinci-002 and 0.45 in gpt-3.5-turbo .

7

Figure 6: Plug-and-play new vision tools without demonstration. We add GroundingDINO [38],
Segment Anything (SAM) [30], XMem [14] as new tools for VisProg. Solely with the documentations
of the new tools, the LLM is able to automatically “re-invent” recent Grounded-SAM [23] and
Track Anything [70] without knowing these derivatives, taking a further step toward automatic
knowledge discovery.

We further compare the performance of the documentation reading with that of the documentation
supplemented with few-shot demonstrations. In the case of text-davinci-002 , with documen-
tation only, we achieves an F1 score of 0.37. Conversely, the documentation augmented with
different shots yields an average F1 score of 0.35. Similarly, in the gpt-3.5-turbo experiment, the
performance with different shot demonstrations (0.44, 0.44, 0.42) are consistently lower than the
documentation-only performance (0.45).

These results highlight two observations. First, the performance of the model is highly sensitive to the
selection of few-shot demonstrations. The observation aligns the finding in [12] that more few-shot
demos might be redundant and even degrade performance due to spurious correlations. It emphasizes
the importance of careful selection and design, which may involve more human effort. Second, the
zero-shot documentation reading baseline exhibits remarkable robustness and delivers competitive
performance across both examples. This highlights the potential value and reliability of relying solely
on the documentation, which is usually easy to get in many packages and tools.

4.3 Plug-and-play with new image and video tools

In this section, we validate that one can equip LLMs with unseen tools to solve novel tasks solely
with tool docs, and without any further demos. We present our results on image editing and video
tracking tasks. We show that LLMs can effectively re-invent existing human-programmed image
editing and video tracking pipelines, backed by state-of-the-art vision models to achieve impressive
results.

Recent advancements in vision models, including GroundingDINO [38], an advanced open-set object
detector; Segment Anything (SAM) [30], a cutting-edge image segmentation tool; and XMem [14], a

8

state-of-the-art video object segmentation tool, accompany the progress of language models. These
breakthroughs, emerging in the past year, serve as additional tools that are yet unfamiliar to our
LLM (gpt-3.5-turbo). By expanding VisProg to include these new tools, we embark on the
intriguing exploration of whether LLMs can effortlessly comprehend the documentation associated
with these new models, and combine these tools in a plug-and-play manner, enabling a wide range of
applications.

In Figure 6, when performing an image editing request “replace the bench with a blue sofa”, the
LLM generates a VisProg program that harnesses the power of GroundingDINO and SAM from the
expanded tool set to segment the bench, and apply the stable diffusion [54] for synthesizing the sofa.
This program re-invents the wheel by replicating the behavior of recent popular project, Grounded-
SAM [23] without prior knowledge of this repository. Similarly, when tasked with video tracking
“track the cat in the video”, the generated VisProg program by the LLM incorporates GroundingDINO
together SAM for first frame segmentation as the initialization for XMem to do video tracking. It
again re-invents the results obtained in the contemporary work, Track Anything [70]. We note that
TaskMatrix [69] also has an updated approach with Grounded-SAM. However, they pre-program the
entire Grounded-SAM editing pipeline as an image editing function, allowing the LLM to control it
rather than enabling the LLM to generate the editing program using the building tools alone as we
present here.

By successfully re-inventing the functionalities of Grounded-SAM and Track Anything without prior
knowledge, solely relying on the available building blocks, the LLM demonstrates not only its capacity
to effortlessly comprehend and combine new tools with documentation only but also highlights its
potential for automatic knowledge discovery. It discovers new insights through leveraging its existing
knowledge only without further demonstration.

4.4 Performance v.s. documentation quality

We investigates the impact of documentation quality on performance. To assess LLM’s capability
to comprehend realistic documentation, we refrain from engineering or curating the content of the
documentation. Instead, we vary the document length by truncating the documents and keeping the
first n words, using it as a proxy for assessing thoroughness and quality. In this ablation, we consider
the LLM-Cloud benchmark, which has long documentation based on real-world GCP CLI manuals.
We illustrate the result in Figure 7.

200 300 400 500 600 700 800
Documentation Length

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

F1
 S

co
re

gpt-3.5-turbo (doc)
text-davinci-002 (doc)
gpt-3.5-turbo (best 15 shots)
text-davinci-002 (best 15 shots)

Figure 7: Performance of zero-shot documentation LLM when varying the input document length.

In both text-davinci-002 and gpt-3.5-turbo experiments, we consistently observe a trend
where performance improves as the document length increases, up to a length of 600. This finding
aligns with our hypothesis that the models possess the ability to comprehend and leverage documen-
tation effectively. Remarkably, this improvement in performance is achieved without any additional
training, fine-tuning nor document curation . It highlights the tremendous value of providing compre-
hensive documentation, as it empowers the models to leverage a wide range of command-line tools at
scale, solely through the process of reading and understanding the documentation.

We note that a degradation in performance after the document length exceeds 600 words. We attribute
this decline to the inherent challenges associated with comprehending lengthy documents in language
models [61]. However, we foresee the ongoing advancements in handling long inputs in language
models will gradually address this limitation [10, 5, 2]. We leave exploring solutions for overcoming
this limitation for future research.

9

5 Conclusion

In this paper, we examined the effectiveness of tool docs in enabling zero-shot tool usage with LLMs.
We first showed that LLMs can achieve on par or better performance than their few-shot counterparts
when provided with tool docs. We then scaled up to a significantly larger tool set on a newly collected
API through docs only. By simply plugging in new tools along with their docs, LLMs are able to
tackle unseen tasks in image editing and video tracking without further demos and replicate the
functionalities of recent popular projects, suggesting a potential for automatic knowledge discovery.
Overall, we shed light on a new perspective of tool usage with LLMs by focusing on their internal
planning and reasoning capabilities with docs, rather than explicitly guiding their behaviors with
demos.

References
[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,

Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel
Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano,
Kyle Jeffrey, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers,
Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. Do as i can and not as i say: Grounding language in robotic
affordances. In arXiv preprint arXiv:2204.01691, 2022.

[2] Anthropic. 100k context windows. https://www.anthropic.com/index/
100k-context-windows, 2023. Accessed: 05/15/2023.

[3] AutoGPT. Auto gpt. https://autogpt.net/category/chatgpt-tools/autogpt/, 2023.
Accessed: 05/15/2023.

[4] Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelli-
gence 15, pages 103–129, 1995.

[5] Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R Gormley. Unlimiformer: Long-
range transformers with unlimited length input. arXiv preprint arXiv:2305.01625, 2023.

[6] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
et al. Improving language models by retrieving from trillions of tokens. In International
conference on machine learning, pages 2206–2240. PMLR, 2022.

[7] SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals in a
monte-carlo framework. Journal of Artificial Intelligence Research, 43:661–704, 2012.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[9] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[10] Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev. Scaling transformer to 1m tokens and
beyond with rmt. arXiv preprint arXiv:2304.11062, 2023.

[11] Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models
as tool makers. arXiv preprint arXiv:2305.17126, 2023.

[12] Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou. How many demonstrations do you
need for in-context learning? 2023.

10

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
https://autogpt.net/category/chatgpt-tools/autogpt/

[13] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks. arXiv
preprint arXiv:2211.12588, 2022.

[14] Ho Kei Cheng and Alexander G Schwing. Xmem: Long-term video object segmentation with an
atkinson-shiffrin memory model. In Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII, pages 640–658. Springer,
2022.

[15] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[16] Surís Dídac, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. arXiv preprint arXiv:2303.08128, 2023.

[17] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. In arXiv preprint arXiv:2303.03378, 2023.

[18] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435,
2022.

[19] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. arXiv preprint arXiv:2211.11559, 2022.

[20] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval
augmented language model pre-training. In International conference on machine learning,
pages 3929–3938. PMLR, 2020.

[21] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In International
Conference on Machine Learning, pages 9118–9147. PMLR, 2022.

[22] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied
reasoning through planning with language models. arXiv preprint arXiv:2207.05608, 2022.

[23] IDEA-Research. Grounded-segment-anything. https://github.com/IDEA-Research/
Grounded-Segment-Anything, 2023. Accessed: 05/15/2023.

[24] Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using
large language models. arXiv preprint arXiv:2303.05398, 2023.

[25] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to
code in programmatic context. arXiv preprint arXiv:1808.09588, 2018.

[26] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark,
and Hannaneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system.
In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1896–1907,
Online, November 2020. Association for Computational Linguistics.

[27] Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

[28] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
arXiv preprint arXiv:2210.02406, 2022.

11

https://github.com/IDEA-Research/Grounded-Segment-Anything
https://github.com/IDEA-Research/Grounded-Segment-Anything

[29] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without
convolution or region supervision. In International Conference on Machine Learning, pages
5583–5594. PMLR, 2021.

[30] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

[31] Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented dialogue generation.
arXiv preprint arXiv:2107.07566, 2021.

[32] Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet-
augmented language models through few-shot prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115, 2022.

[33] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020.

[34] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A
simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557,
2019.

[35] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

[36] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
Tapex: Table pre-training via learning a neural sql executor. arXiv preprint arXiv:2107.07653,
2021.

[37] Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny
Zhou, and Andrew M Dai. Mind’s eye: Grounded language model reasoning through simulation.
arXiv preprint arXiv:2210.05359, 2022.

[38] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

[39] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. In The 36th Conference on Neural Information Process-
ing Systems (NeurIPS), 2022.

[40] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun
Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language
models. arXiv preprint arXiv:2304.09842, 2023.

[41] Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR),
2023.

[42] Yujie Lu, Pan Lu, Zhiyu Chen, Wanrong Zhu, Xin Eric Wang, and William Yang Wang.
Multimodal procedural planning via dual text-image prompting. 2023.

[43] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[44] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2, 2000.

[45] OpenAI. Gpt-4 technical report. 2023.

12

[46] Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer,
and Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language
models. arXiv preprint arXiv:2303.09014, 2023.

[47] Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv
preprint arXiv:2205.12255, 2022.

[48] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

[49] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[50] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

[51] Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023.

[52] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to
master 16000+ real-world apis, 2023.

[53] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code genera-
tion and semantic parsing. arXiv preprint arXiv:1704.07535, 2017.

[54] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[55] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[56] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

[57] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

[58] Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan
Ung, Moya Chen, Kushal Arora, Joshua Lane, et al. Blenderbot 3: a deployed conversational
agent that continually learns to responsibly engage. arXiv preprint arXiv:2208.03188, 2022.

[59] Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–29,
1996.

[60] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
reasoning about natural language grounded in photographs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 6418–6428, Florence, Italy,
July 2019. Association for Computational Linguistics.

[61] Simeng Sun, Katherine Thai, and Mohit Iyyer. Chapterbreak: A challenge dataset for long-range
language models. arXiv preprint arXiv:2204.10878, 2022.

[62] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

13

[63] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[64] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large
language models. arXiv preprint arXiv:2305.04091, 2023.

[65] Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot structured
prediction from natural language. arXiv preprint arXiv:2210.12810, 2022.

[66] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instruc-
tions. arXiv preprint arXiv:2212.10560, 2022.

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

[68] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently.
arXiv preprint arXiv:2303.03846, 2023.

[69] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

[70] Jinyu Yang, Mingqi Gao, Zhe Li, Shang Gao, Fangjing Wang, and Feng Zheng. Track anything:
Segment anything meets videos, 2023.

[71] Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teach-
ing large language model to use tools via self-instruction. arXiv preprint arXiv:2305.18752,
2023.

[72] Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

[73] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed,
Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for
multimodal reasoning and action. arXiv preprint arXiv:2303.11381, 2023.

[74] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. arXiv preprint arXiv:2207.01206,
2022.

[75] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

[76] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. arXiv preprint arXiv:1704.01696, 2017.

[77] Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chen-
guang Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language
models are strong context generators. In The Eleventh International Conference on Learning
Representations, 2023.

[78] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li,
Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. arXiv preprint arXiv:2303.16199, 2023.

[79] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

14

[80] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Mul-
timodal chain-of-thought reasoning in language models. arXiv preprint arXiv:2302.00923,
2023.

[81] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In International Conference on Machine
Learning, pages 12697–12706. PMLR, 2021.

[82] Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to novel
environment dynamics via reading. arXiv preprint arXiv:1910.08210, 2019.

[83] Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting:
Generating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2023.

15

A Broader impacts and limitations

This work studies the importance of tool documentations in equipping LLMs with the ability to
compose usages of a variety of tools to accomplish complex tasks. However, as discussed in [51], it
is imperative to contemplate what tools should be made available to LLMs as well as how one should
interpret and rely on the results obtained from the models. We envision tool documentations as a
channel to guide LLMs in more safely using the tools, aligning with the original intended use of the
tools.

B Implementation details

In this section, we provide further implementation details on each task. We conduct all our experi-
ments on Debian GNU/Linux 10 machines with 40GB A100 GPUs.

B.1 ScienceQA

On ScienceQA [39], we closely follow the original setup 1 used in Chameleon [40], including the
tool docs and few-shot demos (when used). We however find that the “Image Captioner” module used
in the original work often provides less accurate captions on given images. In the documentation, we
thus add the description on this observation for the “Image Captioner” module as shown in Figure 8.

Figure 8: Documentations used in ScienceQA datasets. We used the original tool docs in
Chameleon [40] and added the description for “Image Captioner” that the generated captions may be
inaccurate.

B.2 TabMWP

On TabMWP [41], we strictly follow the original setup used in Chameleon [40]. We refer the readers
to [40] and their open-sourced implementations for further details.

B.3 NLVRv2

On NLVRv2, we follow the setup used in [19]. However, as tool docs are not used in [19], we create
our own docs for the tools used. Figure 9 shows the tool docs we use for several available tools used
in VisProg [19].

1https://github.com/lupantech/chameleon-llm

16

https://github.com/lupantech/chameleon-llm

Figure 9: Example documentations used for tools in VisProg [19].

17

Figure 10: The documentation examples from GCP CLI. We crawl the website, remove the HTML
tags and apply the renaming procedure as the documentation of the created LLM-Cloud CLI.

B.4 LLM-Cloud CLI

More examples. In Table 2, we show more examples of the created LLM-Cloud CLI dataset, based
on GCP CLI.

Creating tool documentations. On the LLM-Cloud CLI dataset, we create tool documentations
using the widely-used BeautifulSoup 2 library to scrape the GCP CLI documentation. We removed
HTML tags and implemented the renaming procedures for LLM-Cloud CLI documentation. We
note that we purposely do not eliminate unrelated content such as terms and hyperlinks. An example
documentation from GCP before our renaming procedure is shown in Figure 10. This is to prevent
excessive engineering of the documentation for better assessing the robustness of LLM documentation
reading ability.

Documentation retrieval details. Given the extensive number of command-line tools in our exper-
iments (200 in total), the complete documentation cannot fit within a single prompt. Consequently,
for each query, we employ a simple TF-IDF search to retrieve the top 10 relevant documentations.
We then truncate the length to a maximum of 600 words. We note that the actual token count depends
on the tokenizer used by each LLM and is typically more than 600.

2https://pypi.org/project/beautifulsoup4/

18

https://pypi.org/project/beautifulsoup4/

Table 2: More examples of the created LLM-Cloud CLI dataset.
Question Commands in GCP Commands after renaming (Final

Answer)
Show me how to deploy
ocr-xer container and invoke
it with a schedule every 2
hours on a project “test_proj”
in sdk command lines. The
ocr-xer container is located
at “us-docker.pkg.dev/gcr-
cleaner/ocr-xer/ocr-xer”.

• gcloud config set project test_proj
• gcloud run deploy ocr-xer

--image=us-docker.pkg.dev/gcr-
cleaner/ocr-xer/ocr-xer

• gcloud scheduler jobs create http
NAME --schedule --schedule="0
*/2 * * *"

• llmcloud config set project
test_proj

• llmcloud run deploy ocr-xer
--image=us-docker.pkg.dev/gcr-
cleaner/ocr-xer/ocr-xer

• llmcloud scheduler jobs make http
NAME --schedule --schedule="0
*/2 * * *"

How to deploy a machine
learning model model.pt
saved in my local to cloud
via sdk command line?

• gsutil cp model.pt LOC/model.pt
• gcloud ai-platform versions cre-

ate VERSION --model MODEL --
origin gs://LOC/model.pt

• llmutil cp model.pt LOC/model.pt
• llmcloud ai-platform versions cre-

ate VERSION --model MODEL --
origin gs://LOC/model.pt

How to get transcript of a
video test.mp4 at local via
the cloud SDK?

• ffmpeg -i test.mp4 -ac 2 -f wav out-
put.wav

• gsutil cp test.wav LOC/test.wav
• gcloud ml speech recognize-long-

running --uri LOC/test.wav

• ffmpeg -i test.mp4 -ac 2 -f wav out-
put.wav

• llmutil cp test.wav LOC/test.wav
• llmcloud ml speech recognize-long-

running --uri LOC/test.wav
How to create a composer
enviroment with a private ip
network?

• gcloud composer environments cre-
ate my_env

• gcloud compute networks subnets
update default --enable-private-ip-
google-access

• llmcloud composer environments
make my_env

• llmcloud compute networks sub-
nets update default --enable-
private-ip-google-access

How to create a service
account test@service.com
with the name “AutoML”
“BigQuery Data Editor”
and “"AutoML Recommen-
dations Service Account”
permissions?

• gcloud iam service-accounts
test@service.com --display-name
AutoML

• gcloud projects add-iam-
policy-binding PROJ_ID --
member="test@service.com"
--role "roles/bigquery.dataEditor"

• gcloud projects add-iam-policy-
binding PROJ_ID --member
"test@service.com" --role
"roles/automlrecommenda-
tions.serviceAgent"

• llmcloud iam service-accounts
test@service.com --display-name
AutoML

• llmcloud projects add-iam-
policy-binding PROJ_ID --
member="test@service.com"
--role "roles/bigquery.dataEditor"

• llmcloud projects add-iam-policy-
binding PROJ_ID --member
"test@service.com" --role
"roles/automlrecommenda-
tions.serviceAgent"

19

B.5 Image editing and video tracking

As discussed in Section 4.3, by providing tool documentations, we can easily add on new tools to
enable LLMs in solving novel tasks such as image editing and video tracking. Here, we leverage
the recent advancements in vision models and expand the tool set used in VisProg [19] with three
new tools: GroundingDINO [38], Segment Anything (SAM) [30], and XMem [14]. We provide their
corresponding documentations in Figure 11.

Figure 11: Documentation of new tools introduced in VisProg. BETTERLOC, BETTERSEG,
TRACK calls GroundingDINO, Segment Anything, XMem, respectively.

20

C Experimental results

In this section, we show the experimental results on each task with comparisons to more baselines.

ScienceQA. In Table 3, we compare zero-shot prompting with tool documentations to other baseline
methods. We include the following baseline methods that are finetuned on the ScienceQA training set
for performance reference: ViLT [29], VisualBERT [34], UnifiedQA CoT [39], MM-CoT [80], and
LLaMA-Adapter [78]. We report the results obtained from [40] for the finetuned methods. For fair
comparison, we shall focus on zero/few-shot settings. Thus, we include Chain-of-Thought (CoT) [67]
and Chameleon [40] as the few-shot baselines to compare to. We see that with tool docs, we can
not only achieve better performance than the few-shot methods without any demos, but we can also
match (outperform) several models specifically finetuned on the dataset.

Table 3: Comparing zero-shot prompting with tool docs to existing baseline methods on ScienceQA.
We see that zero-shot prompting with tool docs performs competitively, outperforming the two
few-shot baselines and several finetuned models.

Finetuned methods Few-shot methods Zero-shot methods

Benchmark ViLT VisualBERT UnifiedQA CoT MM-CoT LLaMA-Adapter CoT Chameleon 0-shot with docs

ScienceQA 61.14 61.87 74.11 84.91 85.19 78.54 79.20 79.91

TabMWP. Similarly, in Table 4, we compare zero-shot prompting with tool docs to various
finetuned models and few-shot baselines, inlcuding: UnifiedQA [26], TAPEX [36], Chain-of-Thought
(CoT) [67], Program-of-Thought (PoT) [13], and Chameleon [40]. We report the results obtained
from [40] for UnifiedQA, TAPEX, and CoT. We see that with tool docs, zero-shot prompting
significantly outperforms finetuned models, and baseline few-shot methods, CoT and PoT. When
compared to Chameleon that utilizes 16 few-shot tool-usage demos, tool docs enable the model to
perform comparably without relying on any demos.

Table 4: Comparing zero-shot prompting with tool docs to existing baseline methods on TabMWP.
We see that with tool docs, even zero-shot prompting without any tool-usage demos achieves better
performance than finetuned models and few-shot CoT and PoT baseline. It also performs comparably
to Chameleon that employs 16-shot tool-usage demos.

Finetuned methods Few-shot methods Zero-shot methods

Benchmark UnifiedQA TAPEX CoT PoT Chameleon 0-shot with docs

TabMWP 57.35 58.52 82.03 89.28 93.88 92.69

NLVRv2. In Table 5, we compare zero-shot prompting with tool docs to a finetuned model on
NLVRv2 and various few-shot baselines. Specifically, we consider ViLT [29] as the finetuned
baseline and VisProg [19] with varying numbers of tool-usage demos as the few-shot baselines.
We report the result obtained from [19] for ViLT. Since VisProg does not utilize tool docs, we see
that its performance is very sensitive to the number of demos used. In addition, we also observe
large performance variances when we randomly select different demos used for prompting, e.g.,
the standard deviation for 2-shot prompting reaches 16.1 percentage point. This indicates that the
few-shot demos may require careful curation for the model to achieve good performance. On the
other hand, with tool docs, zero-shot prompting can already achieve decent performance compared to
only using few-shot demos.

Table 5: Comparing zero-shot prompting with tool docs to existing baseline methods on NLVRv2.
Finetuned methods Few-shot methods Zero-shot methods

Benchmark ViLT VisProg (0-shot) VisProg (2-shot) VisProg (4-shot) VisProg (12-shot) 0-shot with docs

NLVRv2 76.30 0 43.1± 16.1 66.5± 1.4 69.1± 0.1 63.4

21

LLM Cloud-CLI. In Table 6, we present the results on LLM-Cloud CLI with different underlying
LLM planners. On both text-davinci-002 and gpt-3.5-turbo, when there is a large number
of tools, we see documentation is much more important than few-shot demonstrations, where zero-
shot with docs achieves significantly better performances than few-shot without docs. Additionally,
when provided with docs, the LLMs are able to figure out how to use the tools without the need of
demonstrations.

Table 6: Results on the LLM-Cloud CLI.
LLM Number of Demos Documentations F1

text-davinci-002 0 No 0.02
5 No 0.02± 0.02(0.05)

10 No 0.05± 0.02(0.11)
15 No 0.05± 0.05(0.1)
5 Yes 0.35± 0.02(0.37)

10 Yes 0.35± 0.02(0.37)
15 Yes 0.35± 0.01(0.37)
0 Yes 0.37

gpt-3.5-turbo 0 No 0.13
5 No 0.18± 0.06(0.21)

10 No 0.19± 0.06(0.23)
15 No 0.18± 0.06(0.22)
5 Yes 0.44± 0.02(0.47)

10 Yes 0.44± 0.02(0.48)
15 Yes 0.42± 0.04(0.49)
0 Yes 0.45

Image editing. We provide more image editing examples achieved by zero-shot prompting with
tool docs in Figure 12. In particular, we show that with tool docs, we are able to reproduce the image
editing examples achieved by VisProg [19] without using any few-shot demos, wherein VisProg
relies on 10 task-specific few-shot demos.

22

Figure 12: Image editing examples by zero-shot prompting gpt-3.5-turbo with tool docs. Zero-
shot prompting with docs is able to reproduce the results achieved by VisProg using few-shot
demos [19].

23

	Introduction
	Related work
	Experimental setup
	General workflow
	Tool-use prompting methods
	Evaluation tasks

	Empirical findings
	Documentations sidestep the need for demonstrations
	Documentations enable efficient scaling on tool-using
	Plug-and-play with new image and video tools
	Performance v.s. documentation quality

	Conclusion
	Broader impacts and limitations
	Implementation details
	ScienceQA
	TabMWP
	NLVRv2
	LLM-Cloud CLI
	Image editing and video tracking

	Experimental results

