
2024-8-29

RecurrentGemma: Moving Past Transformers
for Efficient Open Language Models
Griffin1, RLHF1 and Gemma Teams1
1Google DeepMind. Please see contributors and acknowledgements section for full author list.

We introduce RecurrentGemma, a family of open language models which uses Google’s novel Griffin
architecture. Griffin combines linear recurrences with local attention to achieve excellent performance
on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long
sequences. We provide two sizes of models, containing 2B and 9B parameters, and provide pre-trained
and instruction tuned variants for both. Our models achieve comparable performance to similarly-sized
Gemma baselines despite being trained on fewer tokens.

Introduction
We present RecurrentGemma, a family of open models based
on the Griffin architecture (De et al., 2024). This architec-
ture eschews global attention, instead modelling the se-
quence through a mixture of linear recurrences (Gu et al.,
2021; Orvieto et al., 2023) and local attention (Beltagy et al.,
2020). We provide two sizes of RecurrentGemma, with 2B
and 9B parameters, both trained on 2T tokens. Our models
achieve superb performance on a range of downstream tasks,
competitive with the Gemma models (Gemma Team, 2024),
an open transformer model family based on insights from
Gemini (Gemini Team, 2023).

To perform inference, transformers must retrieve the KV
cache and load it into device memory. This KV cache grows
linearly with sequence length. Although one can reduce the
cache size by using local attention (Beltagy et al., 2020), this
comes at the cost of reduced performance. In contrast, Re-
currentGemma compresses input sequences into a fixed-size
state without sacrificing performance. This reduces memory
use and enables efficient inference on long sequences. We
verify below that RecurrentGemma models achieve faster
inference than Gemma models.

For each model size, we are releasing both a pre-trained
checkpoint and an instruction tuned checkpoint fine-tuned
for instruction-following and dialogue.1 We are also releas-
ing efficient JAX code to evaluate and fine-tune our models
(Bradbury et al., 2018), including a specialized Pallas kernel
to perform the linear recurrence on TPUs. We provide a
reference PyTorch implementation as well.

Model architecture
We make only a single modification to the Griffin architec-
ture (De et al., 2024), which is to multiply the input embed-
dings by a constant equal to the square root of model width.
The input and output embeddings are tied, but this factor
is not applied to the output. A similar multiplicative factor
appears in Gemma (Gemma Team, 2024). We define the
key model hyper-parameters for both RecurrentGemma-2B
1https://github.com/google-deepmind/recurrentgemma

Table 1 | Key model hyper-parameters. See Griffin paper
(De et al., 2024) for model definition.

RecurrentGemma- 2B 9B

Total params 2.68B 8.58B
Non-Embedding params 2.03B 7.53B
Embedding params 0.65B 1.05B

Vocabulary size 256k 256k
Model width 2560 4096
RNN width 2560 4096
MLP expansion factor 3 3
Depth 26 38
Attention heads 10 16
Local attention window size 2048 2048

and RecurrentGemma-9B in Table 1, and defer the reader to
De et al. (2024) for exact details on the overall architecture.

Note that we do not apply weight decay to the parameters
of the recurrent (RG-LRU) layers during training. Addition-
ally when backpropagating through the square root opera-
tion in the recurrent layers, we always clip the derivative to
a maximum value of 1000 for stability.

Training details

Pre-training

We train on sequences of 8192 tokens. We use the same
pre-training data as the Gemma models, which comprises
primarily English data from web documents, mathematics
and code. This dataset was filtered to reduce the risk of
unwanted or unsafe utterances, and to filter out personal or
sensitive data as well as to filter out all evaluation sets from
our pre-training dataset. We refer to the Gemma report for
more details (Gemma Team, 2024).

We pre-train both RecurrentGemma-2B and
RecurrentGemma-9B on 2T tokens. Note that in contrast,
Gemma-2B was pre-trained on 3T tokens and Gemma-7B
was pre-trained on 6T tokens. Like Gemma, we first train

Corresponding author(s): [botev, sohamde, slsmith, anushanf]@google.com
© 2024 Google DeepMind. All rights reserved

ar
X

iv
:2

40
4.

07
83

9v
2 

 [
cs

.L
G

] 
 2

8 
A

ug
 2

02
4

https://github.com/google-deepmind/recurrentgemma


RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Table 2 | Academic benchmark results, compared to the Gemma models. Note that Gemma-7B contains a similar total
number of parameters to RecurrentGemma-9B (after accounting for embedding layers). Gemma-2B was trained on 3T
tokens and Gemma-7B was trained on 6T tokens, while both RecurrentGemma-2B and RecurrentGemma-9B were trained
on 2T tokens.

Gemma RecurrentGemma

Benchmark Metric 2B 7B 2B 9B

MMLU 5-shot, top-1 42.3 64.3 38.4 60.5
HellaSwag 0-shot 71.4 81.2 71.0 80.4
PIQA 0-shot 77.3 81.2 78.5 81.3
SIQA 0-shot 49.7 51.8 51.8 52.3
Boolq 0-shot 69.4 83.2 71.3 80.3
Winogrande partial scoring 65.4 72.3 67.8 73.6
CQA 7-shot 65.3 71.3 63.7 73.2
OBQA 47.8 52.8 47.2 51.8
ARC-e 73.2 81.5 72.9 78.8
ARC-c 42.1 53.2 42.3 52.0
TriviaQA 5-shot 53.2 63.4 52.5 70.5
NQ 5-shot 12.5 23.0 11.5 21.7
HumanEval pass@1 22.0 32.3 21.3 31.1
MBPP 3-shot 29.2 44.4 28.8 42.0
GSM8K maj@1 17.7 46.4 13.4 42.6
MATH 4-shot 11.8 24.3 11.0 23.8
AGIEval 24.2 41.7 23.8 39.3
BBH 35.2 55.1 35.3 55.2

Average 45.0 56.9 44.6 56.1

Table 3 | Relevant formatting control tokens used for both
SFT and RLHF of Gemma and RecurrentGemma models.

Context Relevant Token

User turn user

Model turn model

Start of conversation turn <start_of_turn>

End of conversation turn <end_of_turn>

Table 4 | Example dialogue with control tokens.

User: <start_of_turn>user
Knock knock.<end_of_turn>
<start_of_turn>model

Model: Who’s there?<end_of_turn>
User: <start_of_turn>user

Gemma.<end_of_turn>
<start_of_turn>model

Model: Gemma who?<end_of_turn>

on a large general data mixture, before continuing training
on a smaller, higher quality dataset. Like Gemma, we
use a subset of the SentencePiece tokenizer (Kudo and
Richardson, 2018), with a vocabulary size of 256k tokens.
Note that, as a consequence of this large vocabulary size,
the embedding layer comprises a significant fraction of the
total model parameters, as shown in Table 1.

Instruction tuning and RLHF

We follow a similar instruction tuning approach to Gemma
(Gemma Team, 2024), including a novel RLHF algorithm to
fine-tune the model to output responses with high reward.
Our instruction tuned model is trained to obey a specific
dialogue format, which is defined in Table 3. For clarity, we
give a concrete example in Table 4.

Evaluation
We evaluate RecurrentGemma across a broad range of do-
mains, using a combination of automated benchmarks and
human evaluation.

Automated Benchmarks

We report the performance of RecurrentGemma on a
range of popular downstream evaluations in Table 2.
RecurrentGemma-2B achieves comparable performance to
Gemma-2B, even though Gemma-2B was trained on 50%
more tokens. RecurrentGemma-9B achieves comparable
performance to Gemma-7B, even though Gemma-7B was
trained on 3× more tokens. Note that RecurrentGemma-
9B has a similar number of total parameters as Gemma-7B
(after accounting for embedding layers).

Human Evaluation

We sent our two final instruction tuned RecurrentGemma
models (2B IT and 9B IT) for human evaluation studies

2



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

(a) Throughput comparison between Gemma-2B and
RecurrentGemma-2B on a single TPUv5e.

(b) Throughput comparison between Gemma-7B and
RecurrentGemma-9B on a single TPUv4.

Figure 1 | Maximum tokens per second generated, when sampling sequences of different lengths from a prompt of 2K
tokens, and when processing prompts of different lengths to generate the initial state from which to sample, for the
RecurrentGemma 2B and 9B models. Both RecurrentGemma models achieve substantially higher sampling throughput than
their Gemma counterpart, especially when generating long sequences. A much higher throughput can be achieved when
processing input prompts compared to when generating samples, since prompt processing can be efficiently parallelized.
RecurrentGemma and Gemma achieve similar prompt processing speeds at both model sizes.

Table 5 | Win rate of RecurrentGemma-2B IT and
RecurrentGemma-9B IT against Mistral 7B v0.2 Instruct,
under human evaluation with 95% confidence intervals. We
report a breakdown of wins, ties and losses, and break ties
evenly when reporting the final win rate. RecurrentGemma-
2B IT is surprisingly competitive with the much larger Mis-
tral 7B model, while RecurrentGemma-9B IT performs much
better than Mistral 7B v0.2 Instruct on Instruction Following.

Model Safety Instruction
Following

RecurrentGemma-2B IT 59.8% 43.7%
95% Conf. Interval [57.1%, 62.6%] [41.8%, 45.6%]
Win / Tie / Loss 47.5% / 24.6% / 27.9% 34.5% / 18.3% / 47.2%

RecurrentGemma-9B IT 59.9% 59.3%
95% Conf. Interval [57.1%, 62.6%] [57.4%, 61.2%]
Win / Tie / Loss 44.6% / 30.7% / 24.8% 50.1% / 18.3% / 31.5%

against the Mistral 7B v0.2 Instruct model (Jiang et al.,
2023). As shown in Table 5, on a held-out collection of
around 1000 prompts oriented toward asking models to
follow instructions across creative writing and coding tasks,
RecurrentGemma-2B IT achieves a 43.7% win rate against
the larger Mistral 7B model, while RecurrentGemma-9B IT
achieves a 59.3% win rate against the Mistral 7B model.

On a held-out collection of around 400 prompts oriented
towards testing basic safety protocols, RecurrentGemma-
2B IT achieved a 59.8% win rate against Mistral 7B v0.2
Instruct model, while RecurrentGemma-9B IT achieved a
59.9% win rate against Mistral 7B v0.2 Instruct.

Inference Speed Benchmarks

A key advantage of RecurrentGemma is that it has a sig-
nificantly smaller state size than transformers on long se-
quences. Whereas Gemma’s KV cache grows proportional
to sequence length, RecurrentGemma’s state is bounded,
and does not increase on sequences longer than the local
attention window size of 2K tokens. Inference is typically
a memory-bound process for language models (De et al.,

2024). Consequently, while the longest sample that can
be generated autoregressively by Gemma is limited by the
memory available on the host, RecurrentGemma can gener-
ate sequences of arbitrary length. Furthermore, the reduced
memory requirement also enables RecurrentGemma to per-
form inference at much larger batch sizes, which amortizes
the cost of loading model parameters from host memory
into device memory.

In Figures 1a and 1b, we compare the inference through-
put achieved by the RecurrentGemma 2B and 9B models to
the similarly-sized Gemmamodels. We first plot the through-
put achieved when sampling from a prompt of 2K tokens for
a range of generation lengths. The throughput calculates the
maximum number of tokens we can sample per second on a
single TPUv5e device (in the case of RecurrentGemma-2B)
or a single TPUv4 device (in the case of RecurrentGemma-
9B). Note that in this plot, we do not account for the time
required to process the prompt or the time required to con-
vert the output sequence from a list of token ids into the final
text string. RecurrentGemma achieves higher throughput at
all sequence lengths considered. The throughput achieved
by RecurrentGemma does not reduce as the sequence length
increases, while the throughput achieved by Gemma falls
as the cache grows. RecurrentGemma-9B achieves particu-
larly large (up to two orders of magnitude) improvements
over Gemma-7B as shown in Figure 1b. We note that this
is primarily due to Gemma-7B using Multi-Head Attention,
whereas Gemma-2B uses Multi-Query Attention.

For completeness, we also show the throughput achieved
when processing input prompts of different lengths. Unlike
auto-regressive sampling, the prompt is processed in paral-
lel. Gemma and RecurrentGemma process input prompts at
similar speeds. When processing the prompt, both Gemma
and RecurrentGemma achieve throughput of roughly 40K
tokens per second for the 2B models and roughly 12K tokens
per second for the 9B model. By contrast, when sampling,
RecurrentGemma achieves throughput of 6K tokens per sec-
ond, with Gemma substantially slower. Thus, sampling will
dominate the total time required, unless the prompt is sig-
nificantly longer than the desired sample.

3



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Table 6 | Safety academic benchmark results. We provide results for both our pre-trained checkpoint and our instruction
tuned variant. For the RealToxicity and Toxigen benchmarks, a lower score is better (indicated by ↓). For all other
benchmarks, a higher score is better (indicated by ↑).

RecurrentGemma-2B RecurrentGemma-9B

Benchmark metric PT IT PT IT

RealToxicity (↓) avg 9.8 7.6 10.3 8.8
BOLD (↑) 39.3 52.3 39.8 47.9
CrowS-Pairs (↑) top-1 41.1 43.4 38.7 39.5
BBQ Ambig (↑) top-1 62.6 71.1 95.9 67.1
BBQ Disambig (↑) top-1 58.4 50.8 78.6 78.9
Winogender (↑) top-1 55.1 54.7 59.0 64.0
TruthfulQA (↑) 35.1 42.7 38.6 47.7
Winobias 1_2 (↑) 58.4 56.4 61.5 60.6
Winobias 2_2 (↑) 90.0 75.4 90.2 90.3
Toxigen (↓) 56.7 50.0 58.8 64.5

Figures 1a and 1b were generated using the Flax imple-
mentation of RecurrentGemma, which includes a specialized
Pallas kernel for execution on TPUs. Users should expect
lower throughput when using the Pytorch implementation
or when using GPUs. We perform inference for Gemma
using a modified version of Gemma’s Flax implementation,
which we optimized further to improve performance.

Responsible Deployment

We follow the same safety mitigations as described in the
Gemma release (Gemma Team, 2024). We evaluated our
models on standard academic safety benchmarks, as shown
in Table 6, and our final models were also subjected to
ethics and safety evaluations by an independent team before
release. However, our testing cannot cover all possible use
cases of RecurrentGemma, and thus we recommend all users
of RecurrentGemma to conduct their own safety testing,
specific to their use-case, prior to deployment.

Conclusion
RecurrentGemma offers the performance of Gemma, while
achieving higher throughput during inference, especially
on long sequences. We hope that RecurrentGemma will un-
lock novel applications of highly performant small language
models in resource constrained environments.

4



RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

Contributions and Acknowledgments

Griffin Team
Aleksandar Botev†
Soham De†
Samuel L Smith†
Anushan Fernando†
George-Cristian Muraru†
Ruba Haroun†
Leonard Berrada†
Razvan Pascanu

RLHF
Pier Giuseppe Sessa
Robert Dadashi
Léonard Hussenot
Johan Ferret
Sertan Girgin
Olivier Bachem

Gemma Team
Alek Andreev
Kathleen Kenealy
Thomas Mesnard
Cassidy Hardin
Surya Bhupatiraju
Shreya Pathak
Laurent Sifre
Morgane Rivière
Mihir Sanjay Kale
Juliette Love
Pouya Tafti
Armand Joulin
Noah Fiedel
Evan Senter

Contributors
Yutian Chen
Srivatsan Srinivasan
Guillaume Desjardins
David Budden
Arnaud Doucet
Sharad Vikram
Adam Paszke
Trevor Gale
Sebastian Borgeaud
Charlie Chen
Andy Brock
Antonia Paterson
Jenny Brennan
Meg Risdal
Raj Gundluru
Nesh Devanathan
Paul Mooney
Nilay Chauhan
Phil Culliton
Luiz GUStavo Martins
Elisa Bandy
David Huntsperger
Glenn Cameron
Arthur Zucker

† Joint first authors.

Product Management
Tris Warkentin
Ludovic Peran

Program Management
Minh Giang

Executive Sponsors
Nando De Frietas
Yee Whye Teh
Raia Hadsell
Zoubin Ghahramani
Clément Farabet
Koray Kavukcuoglu
Demis Hassabis

Acknowledgements
Our work is made possible by the dedication and efforts
of numerous teams at Google. We would like to acknowl-
edge the support from the following teams: Gemini, Gemini
Safety, Gemini Infrastructure, Gemini Evaluation, Google
Cloud, Google Research Responsible AI and Kaggle.

References
I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150,
2020.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, et al. Jax: composable transfor-
mations of python+ numpy programs. 2018.

S. De, S. L. Smith, A. Fernando, A. Botev, G. Cristian-Muraru,
A. Gu, R. Haroun, L. Berrada, Y. Chen, S. Srinivasan,
G. Desjardins, A. Doucet, D. Budden, Y.W. Teh, R. Pascanu,
N. D. Freitas, and C. Gulcehre. Griffin: Mixing gated linear
recurrences with local attention for efficient language
models, 2024.

Gemini Team. Gemini: A family of highly capable multi-
modal models, 2023.

Gemma Team. Gemma: Open models based on gemini
research and technology, 2024.

A. Gu, K. Goel, and C. Ré. Efficiently modeling long se-
quences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S.
Chaplot, D. de las Casas, F. Bressand, G. Lengyel, G. Lam-
ple, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock,
T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed.
Mistral 7b, 2023.

T. Kudo and J. Richardson. Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer
for neural text processing, 2018.

A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gul-
cehre, R. Pascanu, and S. De. Resurrecting recurrent
neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

5


	Introduction
	Model architecture
	Training details
	Pre-training
	Instruction tuning and RLHF
	Evaluation
	Automated Benchmarks
	Human Evaluation
	Inference Speed Benchmarks
	Responsible Deployment

	Conclusion
	Contributions and Acknowledgments



