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Random testing approaches work by generating inputs at random, or by selecting inputs randomly from some
pre-defined operational profile. One long-standing question that arises in this and other testing contexts is as
follows: When can we stop testing? At what point can we be certain that executing further tests in this manner
will not explore previously untested (and potentially buggy) software behaviors? This is analogous to the
question in Machine Learning, of how many training examples are required in order to infer an accurate model.
In this paper we show how probabilistic approaches to answer this question in Machine Learning (arising
from Computational Learning Theory) can be applied in our testing context, to provide an upper-bound on
the number of tests required to achieve a given level of adequacy. We validate this bound on a large set of Java
units, and an autonomous driving system.

CCS Concepts: • Software and its engineering→ Empirical software validation; • Theory of computa-
tion → Sample complexity and generalization bounds.

Additional Key Words and Phrases: Test saturation, PAC Learning, Sample Complexity

1 INTRODUCTION
Random testing [29] is a widely used approach to automated software testing. It relies on the
availability of an efficient process for generating test inputs that can be readily used to generate
and execute large numbers of tests [3]. The mechanisms that are used for this can range from
entirely uniform and genuinely random, to more carefully crafted generators that produce inputs
that collectively represent an operational profile of the program under test [49].
One fundamental question that arises with these automated approaches is [18, 25]: When can

the testing be stopped? When do we hit a ‘saturation point’ after which the execution of further
tests will not cover any additional functionalities or potentially expose additional bugs? Currently,
the decision of when to stop is often left to the judgment of the individual tester [6], or testing is
afforded a fixed time-budget [56]. In their roadmap papers, Harrold [30] and Böhme [6] make the
case for frameworks that provide a statistical basis for test adequacy and stopping criteria.
A similar question arises in the context of Machine Learning [57, 58]: How many data-points

are required to reliably infer an accurate model? In this context, Computational Learning Theory
enables us to place bounds on the number of training examples that would be required by a given
learning algorithm to guarantee some level of accuracy. Valiant’s Probably Approximately Correct
(PAC) framework [58] has been used to establish bounds for several learning algorithms.

These PAC bounds are relevant because this relationship between testing and Machine Learning
was established 40 years ago, almost simultaneously by Weyuker [61] and Budd and Angluin [9].
They suggested that the two fields could be combined; that test-adequacy could be assessed by
inferring a predictive model of software behavior from the observed test inputs and outputs. If the
model in question is accurate, then the test set clearly has a sufficiently high information content,
and can be deemed to be “inference adequate” [61, 65]. In this context, the requirements on the
number of examples for Machine Learners established by PAC reasoning can potentially be used to
establish the number of tests that would be required to reach a point of saturation.
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There have been sporadic efforts to apply PAC to testing, most of which took place in the 90s
[53, 65, 66]. These are however hard to apply to generic software. They rely on the availability of a
learning algorithm that is both sufficiently versatile to infer the input-output behavior for arbitrary
systems (a task that remains elusive in and of itself), and has been proven to be a PAC algorithm –
i.e. to be able to guarantee an accurate result within a polynomial number of training examples.

In this paper we show how the above problem can be side-stepped. Instead of characterizing the
tested behavior of a program in terms of externally observable behaviors, we encode the behavior
as the coverage of test objectives within the source code. The choice of objectives is flexible, and
may comprise source code statements, branches, etc. The salient point for us is that these can
be coded as simple lists of Boolean variables (indicating whether an objective has / has not been
covered), regardless of the externally observable behavior of the underlying program.
In this context, we show how the question of how many tests are required before a point of

saturation is reached can (in the context of random testing) be framed as the question of how many
training examples would be required to infer a Boolean conjunction, where the Boolean variables
in question correspond to coverage objectives. Since Boolean conjunctions have been shown to be
PAC-learnable [58], we show how the upper-bounds on the training sets for Boolean conjunctions
can be mapped to upper bounds on the number of tests required to achieve an adequate test set.

In effect, this enables us to calculate the number of tests that must be executed in order to offer a
probabilistic guarantee that the underlying test set is adequate. This is done ‘a-priori’ – without the
need to execute any tests or to run Machine Learning algorithms. The specific contributions of this
paper are as follows:

• We show how the question of establishing which statements are executable by a random
test set [45] maps to the Machine Learning problem of inferring Boolean conjunctions [58].

• We show how PAC limits that bound the number of training examples required to guarantee
accuracy of inferred Boolean conjunctions can be applied to bound the number of random
tests beyond which there is a saturation effect.

• We empirically demonstrate the reliability of the bound in two studies: One on random tests
of 7,198 publicly available Java units, and another on operational tests of an autonomous
driver in the CARLA driving simulator.

2 TESTING AND TEST ADEQUACY
2.1 Random Testing
Random testing [29] is a popular approach to test-input generation. It is based on the premise
that inputs to a program can be characterized in the form of a distribution, and that inputs can
be repeatedly sampled. Ideally, the distribution from which tests are selected should reflect the
intended ‘operational profile’ of the system [49]. This makes it possible to draw probabilistic
conclusions about the reliability of the system once it is deployed (i.e. the likelihood of failures
arising, assuming that the operational profile is accurate [29]) from the sampled test executions.

Definition 2.1. We define a random test generator as the function1 randomTests : 𝐼 ×𝐷𝐼 ×𝑛 → 𝑇 .
𝐼 represents the input domain - the set of possible inputs to the system under test. 𝐷𝐼 represents a
distribution over these elements. Since we will encounter distributions of elements in a Machine
Learning context as well, we will use the subscript (e.g. 𝐼 ) to signify the set of elements to which the
distribution applies. 𝑛 represents the number of times that 𝐷𝐼 is sampled with a uniform probability
(also known as ‘sampling with replacement’). The result is a list of test inputs 𝑇 = [𝑡1, . . . , 𝑡𝑛].

1We assume that this function is non-deterministic, and that the sample varies each time. We choose this notation because
it is aligned with equivalent data-sampling definitions used in PAC, which are covered later.
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2.2 Test Adequacy and Code Coverage
Test data adequacy [25] refers to a measure or a criterion to evaluate the capability of a test set to
reliably expose the faults in a system. If a test set is deemed to be adequate, a failure-free execution
of the test set should ideally imply that the system under test does not contain any faults.

2.2.1 Code Coverage. The most popular approach to gauging test adequacy is to measure code
coverage. This is founded on the premise that there is a relationship between the extent to which
the source code is executed, and the capability of a test set to explore and expose faults. Many
code-based test adequacy measures have been proposed over the years [67]. In practice, statement
and branch coverage remain the most commonly used [35].
Though widely used, code coverage has been the subject of a significant amount of criticism.

Several studies have indicated a relatively poor correlation between code coverage and the ability
of a test set to expose faults [10, 33]. One key criticism is that it is not decidable whether all of the
code elements are executable in the first place [9, 18]. This gives rise to a dilemma for the tester
[62]: if a test set achieves only 80% coverage, is this because the remaining 20% are not feasibly
executable? Or is it because the test set is incomplete?

2.2.2 Predicting Test Saturation. One well-established property of random testing is known as the
saturation effect [41, 56]. As the number of tests increases, the rate of convergence towards a given
adequacy criterion decreases. Beyond a certain point, any change in coverage is only negligible.
In other words, when running random tests, there is invariably a point of ‘diminishing returns’,
where executing further tests to improve coverage is no longer worthwhile.

Tracking coverage can play a useful role in assessing the point at which a saturation point has
been reached [1]. Depending on the type of system and testing approach, this can also take a long
time. In a recent experiment by Liyanage et al. [39], no saturation point was observed over the
span of a week long fuzzing cycle.
The question then arises of whether the saturation point can be predicted, or a bound can

be placed on the number of tests required to reach the saturation point. Arcuri and Briand [3]
re-framed the task of meeting test-objectives as the Coupon Collector problem [48], in order to
place a lower bound on the number of tests required. However, their Coupon-Collector bound
has two significant drawbacks. Firstly, it is dependent upon the assumption that test objectives
are disjoint; i.e. that a given test will only achieve a single test objective if any. As such, scenarios
where a single test can achieve multiple objectives (e.g. covering multiple statements or branches)
are not applicable. Secondly, it is only a lower bound: the number of test cases that are actually
required to meet the test objectives could be significantly higher. In practice, a tester would ideally
have an upper bound, i.e., a number of tests beyond which they can guarantee (perhaps within
some given probability) that their testing objectives have been met.
There has also been a significant amount of work on predicting saturation in the context of

fuzzing, by Liyanage et al. [39, 40]. In this context, Liyanage et al. proposed an ‘on-line’ approach
that can predict the saturation point on the basis of coverage data from tests executed so far.
They show that the predictions converge on an accurate estimate after an initial ‘burn-in’ period.
Their fuzzing context is different to the standard random-testing scenario considered here, because
fuzzers tend to actively adapt their seed schedules to maximize coverage [68]. Since they are dealing
with an input-distribution that is dynamic, the relationship to code coverage requires a significant
amount of data to estimate (this is corroborated by their results, which can require millions of
executions before they can converge on an accurate prediction of saturation).

2.2.3 Relevant Coverage and its Relation to Saturation. In practice, testers are only assessing test
effectiveness in terms of code that is feasibly executable. In the random testing context (Definition
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2.1), this amounts to the sub-set of statements that can be executed by inputs in 𝐼 that have a
non-negligible probability of being selected according to 𝐷𝐼 . The notion corresponding to this
sub-set of statements is referred to by Miranda and Bertolino [44, 45] as ‘Relevant Coverage’.

Relevant Coverage is directly related to the saturation effect discussed above. The achievement
of Relevant Coverage coincides with the point at which the saturation point has been reached. As
such, the ability to predict or bound the number of tests required to achieve Relevant Coverage
implies the ability to predict the number of tests at which saturation occurs.

2.2.4 Program Spectra. Program spectra [31, 51] offer a more fine-grained perspective on software
behavior. A program spectrum relates individual executions to code elements. The data recorded
for a code element typically includes whether a code element has been executed (a Hit Spectrum),
or the number of times it has been encountered during a single execution (known as a Frequency or
Count Spectrum). Program spectra have proven to be particularly useful for fault localization [63].
In their work on Relevant Coverage, Miranda and Bertolino show that a Hit Spectrum can be

used as a basis for determining the set of statements that should be ‘in-scope’ in order to measure
the relevant coverage [45]. The premise is that, for a given set of test cases, a hit spectrum can be
used to distinguish between statements that are or are not relevant to a usage context. If a statement
is hit by every test case for the usage-context in question, it can be deemed to be essential and
in-scope. Otherwise, if it is only occasionally executed, it can be deemed to be out of scope.

In this paper we take advantage of this relationship between hit-spectra and coverage. To facilitate
this discussion later on, we provide a more formal definition of hit spectra here.

Definition 2.2. For a program with a set of 𝑛 code elements (we will be referring to statements
by default), which has been executed by 𝑡 test cases, a Hit Spectrum 𝐻𝑆 is a binary matrix:

𝐻𝑆 =


𝑥1,1 . . . 𝑥𝑛,1
...

. . .
...

𝑥1,𝑡 . . . 𝑥𝑛,𝑡


An element 𝑥𝑖, 𝑗 = 1 if test execution 𝑖 executes code element 𝑗 , and 𝑥𝑖, 𝑗 = 0 otherwise.

2.3 Inference Adequacy
The link between testing and Machine Learning can be traced back to Moore’s 1956 paper on
Gedanken Experiments on Sequential Machines [47]. The relationship was however first formalized
40 years ago by Weyuker [61], who posited (along with Budd and Angluin [9]) that inference
could be used for assessing test adequacy. We provide a version of Weyuker’s formalization here
(customized to facilitate the linkage with Probably Approximately Correct learning in Section 4).

The essential idea behind inference adequacy is that a test set can be deemed to be ‘adequate’ if,
upon execution, it generates sufficient information to enable an inference engine to infer a model
that accurately represents the system. To formalise this we start by defining the system under test
(SUT). This has an input domain 𝐼 (as defined for random test generation in Definition 2.1). We use
𝑂 to denote the set of observable outputs.

Definition 2.3. The SUT is defined as a function 𝑠𝑢𝑡 : 𝐼 → 𝑂 .

Definition 2.4. An observation trace 𝑂𝑏𝑠 is obtained by running a list of inputs 𝑡 ∈ 𝐼 on the 𝑠𝑢𝑡 .
𝑂𝑏𝑠 = [(𝑡1, 𝑠𝑢𝑡 (𝑡1)), . . . , (𝑡𝑛, 𝑠𝑢𝑡 (𝑡𝑛))], where 𝑛 = |𝑇 |.

Definition 2.5. Given a set of test observations 𝑂𝑏𝑠 , an inference engine infer : 𝑂𝑏𝑠 → 𝑀 will
infer a model𝑀 : 𝐼 → 𝑂 , which is capable of predicting outputs in 𝑂 for inputs in 𝐼 .
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Definition 2.6. ‘Inference adequacy’ can be defined as a Boolean valued function, as follows2:

infAdequate : 𝑇 × 𝑠𝑢𝑡 × infer → B

𝑇 represents the set of test inputs that we seek to assess. 𝑠𝑢𝑡 and infer are as presented in
Definitions 2.3 and 2.5 respectively. The tests in𝑇 are run on the SUT to produce a list of observations,
which is used to infer model𝑀 . infAdequate returns true if𝑀 ≡ 𝑠𝑢𝑡 , and false otherwise.

Establishing this equivalence 𝑀 ≡ 𝑠𝑢𝑡 is challenging in practice, because it is essentially a
model-based testing problem in and of itself. One typical approach (also proposed by Weyuker)
is to create a further ‘reference’ test set 𝑅 (Weyuker suggests that this may be done by random
generation [61]). infAdequate(𝑇, 𝑠𝑢𝑡, infer) = true iff ∀𝑟 ∈ 𝑅, 𝑠𝑢𝑡 (𝑟 ) = 𝑀 (𝑟 ).
This view of test adequacy is distinctive because it is not coverage-based. The task is to collect

enough information to enable the inference of a model𝑀 such that𝑀 ≡ 𝑠𝑢𝑡 . This circumvents the
issues arising with code coverage mentioned in Section 2.2.

There has been a significant amount of research into testing techniques that apply this principle
[4, 8, 13, 22, 34, 43, 60]. Typically, they adopt an iterative approach of test-selection, execution and
inference. The role of 𝑠𝑢𝑡 is usually played by the program under test itself, and no presumptions
are made about the provision of specification documents (though there are exceptions to this [16]).
The inferred model𝑀 is evaluated in terms of its predictive accuracy (either by further tests, or
by using a Machine Learning evaluation process such as k-folds cross-validation). If the model is
deemed to be sufficiently accurate, the process terminates. The key point is that the test-inference
loop depends on the output of an inference algorithm.
There are three strong caveats that apply when using inference adequacy. Firstly, this form of

adequacy is only internally valid. The accuracy of the model (and therefore the inference-adequacy
of the test set) can only be assessed in terms of 𝑅, the second evaluative test set. This however
leads to a circular situation where there is no reason that we can have any more confidence in the
adequacy of 𝑅 than we can in 𝑇 .

Another more technical restriction of this approach is the fact that it is limited to programs where
there exists an appropriate inference algorithm for the observable behavior. For many classes of
program the choice of inference algorithm is not obvious. Currently, the vast majority of approaches
tend to focus on programs where the behavior can be captured by reasonably straightforward
classes of models such as finite state machines or decision trees.

A final consideration is the trade-off between the time required to infer amodel, and the respective
benefit of using this time to simply execute larger numbers of tests instead. This point was raised
by Arcuri and Briand [3] with respect to Adaptive Random Testing [11]. The value of inference
adequacy will be more pronounced for programs with longer execution times, where the time
required to infer and reason about a model is more worthwhile than simply using the inference
time to execute large numbers of random tests.

3 COMPUTATIONAL LEARNING THEORY
Computational Learning Theory refers broadly to the analysis of the theoretical capabilities of
Machine Learning algorithms. This involves the analysis of whether a given concept is learnable in
theory and, by implication, whether there is an asymptotic bound on the number of data-points
required by a learning algorithm to achieve this. Valiant’s Probably Approximately Correct (PAC)
framework [57, 58] offers a particularly useful and well-established basis for such analysis.
2In her paper Weyuker actually provides two flavors of inference adequacy - one where the inference involves the provision
of a specification stipulating correct behavior properties to be inferred, and one where the behavior is evaluated directly in
comparison with the program. We focus here on the latter as we do not in this paper presume the provision of a specification.
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We will provide a brief summary of PAC, and the reasoning involved in establishing a bound on
the number of examples required by a learner. We base our presentation of PAC on the notation
used by Shalev-Shwartz and Ben-David in their book on Machine Learning foundations [54].

3.1 The Probably Approximately Correct Framework
The following definitions capture the PAC learning setting (as discussed in Learning theory text
books [37, 54]) in such a way that will facilitate the linkage with testing in later sections.

We start from a domain set of objects𝑋 which will form potential inputs to an inferred model (e.g.
bitmaps of hand-written characters for which we wish to infer the character). For training purposes,
we collect a sample of these according to some fixed distribution 𝐷𝑋 , within which elements are
independently and identically distributed (i.i.d.).

Definition 3.1. 𝑠𝑎𝑚𝑝𝑙𝑒 : 𝑋 ×𝐷𝑋 ×𝑚 → 𝑆 represents the process of sampling a set 𝑆 of𝑚 elements
in 𝑋 according to 𝐷𝑋 .

It is also assumed that there is a set of labels 𝑌 , representing the set of possible labels that could
be attributed to elements in 𝑋 (e.g. the set of alphanumeric characters).

Definition 3.2. 𝑙𝑎𝑏𝑒𝑙 : 𝑋 → 𝑌 represents the process of attributing the ‘ground truth’ label in 𝑌
for some given element in 𝑋 .

A learner’s objective is to infer a model that, for any 𝑥 in 𝑋 , accurately predicts the label in 𝑌 .

Definition 3.3. A training set is constructed by the function 𝑡𝑟 , which takes a sample of inputs
with the 𝑠𝑎𝑚𝑝𝑙𝑒 function, and identifies the corresponding labels for them with the 𝑙𝑎𝑏𝑒𝑙 . 𝑡𝑟 :
𝑠𝑎𝑚𝑝𝑙𝑒 × 𝑙𝑎𝑏𝑒𝑙 → [(𝑥1, 𝑙𝑎𝑏𝑒𝑙 (𝑥1), . . . , (𝑥𝑚, 𝑙𝑎𝑏𝑒𝑙 (𝑥𝑚))], where 𝑥𝑛 ∈ 𝑋 and 𝑙𝑎𝑏𝑒𝑙 (𝑥𝑛) ∈ 𝑌 .

Definition 3.4. The hypothesis class𝐻 for a learner corresponds to the set of all possible mappings
𝑋 → 𝑌 representing potential target concepts in the instance space.

Definition 3.5. A learner 𝐿 : 𝑇𝑆 → 𝐻 denotes the learner. This takes as input a training set 𝑇𝑆
and returns a hypothesis ℎ ∈ 𝐻 .

Definition 3.6. Ideally an inferred hypothesis should have a small generalization error. The
generalization error 𝐿𝑜𝑠𝑠𝐷,𝑙𝑎𝑏𝑒𝑙 (ℎ) is the probability that ℎ does not predict the correct label on a
random data point generated by the underlying distribution 𝐷 .

𝐿𝑜𝑠𝑠𝐷,𝑙𝑎𝑏𝑒𝑙 (ℎ) = P𝑥∼𝐷 [ℎ(𝑥) ≠ 𝑙𝑎𝑏𝑒𝑙 (𝑥)] = 𝐷 ({𝑥 : ℎ(𝑥) ≠ 𝑙𝑎𝑏𝑒𝑙 (𝑥)}) (1)

Since distribution 𝐷 and labeling function 𝑙𝑎𝑏𝑒𝑙 are not known to the learner, the generalization
error can only be approximated by calculating the empirical error with respect to labeled sample 𝑆 .

Definition 3.7. The empirical error is the proportion of instances in 𝑆 that are misclassified:

𝐿𝑜𝑠𝑠𝑆 (ℎ) =
|{𝑖 ∈ [1..𝑚] : ℎ(𝑥𝑖 ) ≠ 𝑦𝑖 }|

𝑛
(2)

For a concept class to be “learnable” in a PAC setting, the objective is to prove that an algorithm
will always return a result where the accuracy is reasonably high. For this we wish to ensure that
the generalization error (Definition 3.6) is bounded by some allowable margin of error 𝜖 . Since the
samples in the training set are sampled i.i.d. from some distribution D, there is also a chance that a
sample is chosen that is not representative of the target concept 𝑐 . In a PAC setting, we want to
ensure that the risk of this falls within a bound 𝛿 . So the confidence that we are inferring from a
representative distribution is denoted (1 − 𝛿).
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In a PAC setting, it is normal to adopt the simplifying assumption that every hypothesis returned
by a learning algorithm in PAC is consistent [54]: it is entirely consistent with the training sample
𝑆 (𝐿𝑆 (ℎ) = 0). This assumption (referred to as the Realizability assumption) can be relaxed [54], but
is kept here because it simplifies the discussion of the sample complexity.

Definition 3.8. A hypothesis class 𝐻 is said to be PAC-learnable if there exists a ‘sample com-
plexity’ function𝑚𝐻 : (𝜖, 𝛿) (discussed in more detail below) and a learning algorithm with the
following property: For every 𝜖, 𝛿 ∈ (0, 1), for every distribution 𝐷 over 𝑋 , and for every labelling
function 𝑙𝑎𝑏𝑒𝑙 : 𝑋 → {0, 1}, if the realizability assumption holds with respect to 𝐻,𝐷, 𝑙𝑎𝑏𝑒𝑙 , then
when running the learning algorithm on𝑚 ≥ 𝑚𝐻 (𝜖, 𝛿) i.i.d. examples generated by 𝐷 and labelled
by 𝑙𝑎𝑏𝑒𝑙 , the algorithm returns a hypothesis ℎ such that, with probability at least 1 − 𝛿 (over the
choice of examples), 𝐿𝑜𝑠𝑠𝐷,𝑓 (ℎ) ≤ 𝜖 .

3.2 Hypothesis Space Size and Sample Complexity
The function𝑚𝐻 : (0, 1)2 → N determines the sample complexity of learning 𝐻 . It determines the
number of examples (i.e. the size of 𝑆) that guarantee a probably approximately correct solution
[54]. The ability to prove that some concept is PAC-learnable implies the ability to derive a bound
for𝑚𝐻 . This depends on the choices for 𝜖 and 𝛿 , and an ability to quantify the complexity of 𝐻 .
When it comes to quantifying the complexity of 𝐻 , in the simplest case (which is sufficient for

the purposes of our paper), we consider the situation where 𝐻 is finite. The size of 𝐻 may be a
(potentially exponential) function of𝑚 - the computational cost of representing an instance 𝑥 ∈ 𝑋 ,
e.g. the number of features in an instance. We will provide an example of such a bound below.

When 𝐻 is finite,𝑚𝐻 can be bounded as follows [32]:

𝑚 ≥ 1
𝜖

(
𝑙𝑛( |𝐻 |) + 𝑙𝑛 1

𝛿

)
(3)

In other words, if𝑚 satisfies this bound, then we can guarantee that, for any inferred hypothesis
ℎ, the generalization error will be less than or equal to 𝜖 , with a probability of 1 − 𝛿 . It is important
to emphasize that this pertains to the generalization error as opposed to the empirical error; we
can be confident that any model inferred from a sample of size𝑚 will be probably approximately
accurate without the need to sample data or execute a learner.

The proof of this limit is detailed by Haussler [32] and in text books on learning theory [37, 46, 54].
These references also contain generalizations of this bound that apply to situations where 𝐻 is
infinite (which draw upon the Vapnik Chervonenkis dimension [59] as a means of measuring the
complexity of the hypothesis space).

3.3 Boolean Conjunctions
We focus on the case of finite hypothesis spaces, because this is all that we require. To illustrate the
concept of a hypothesis space and the corresponding sample complexity, we consider the specific
challenge of learning Boolean conjunctions. Aside from being one of the canonical examples of
PAC learnability [37, 58], it is also the algorithm that we use to reason about test set size.
For the conjunction learning setting, the instance space is 𝑋𝑛 = {0, 1}𝑛 . Each training instance

𝑎 ∈ 𝑋𝑛 is an assignment to the 𝑛 boolean variables 𝑥1, . . . , 𝑥𝑛 . An example instance might be the
conjunction 𝑥1 ∧ ¬𝑥3 ∧ 𝑥4 [37], which would be represented as the set {𝑎 ∈ {0, 1}𝑛 : 𝑎1 = 1, 𝑎3 =
0, 𝑎4 = 1}. Note that this leaves the possibility that some variables will not be given any assignments.
The task for a learner would be to, from a set of instances in 𝑋 , produce a hypothesis ℎ where ℎ
is some specific target conjunction. In this case, the size of the hypothesis space (denoted |𝐻𝑛 |) is
|𝐻𝑛 | = 3𝑛 – where each variable is either true, false, or is not given any assignments.
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An algorithm that renders 𝐻 PAC-learnable [58] could start from a hypothesis that is the
conjunction of all positive and negative literals (i.e. ℎ = 𝑥1 ∧ ¬𝑥1 ∧ . . . ∧ 𝑥𝑛 ∧ ¬𝑥𝑛). Then, for each
example from 𝐷 , 𝐿 updates ℎ such that any literal that ‘contradicts’ the example is deleted: for
each 𝑖 , if 𝑎𝑖 = 0, 𝑥𝑖 is deleted and if 𝑥𝑖 = 1, ¬𝑥𝑖 is deleted. The proof that this renders the boolean
conjunction problem PAC-learnable is elaborated by Valiant [57, 58] and Kearns and Vazirani [37].

In order to establish the number𝑚 of examples that would be required to guarantee an accurate
(within error bounds 𝜖 and 𝛿) conjunction, we can therefore apply the limit from Equation 3. For
example, for an expression of 30 boolean literals (𝑛 = 30), with 𝜖 = 0.1 and 𝛿 = 0.1 (we tolerate a
classification error of up to 10%, and require this to be upheld 90% of the time), this would yield3:

𝑚 ≥ 1
0.1

(𝑙𝑛(303) + 𝑙𝑛(1/0.1)) = 352.6095

4 APPLYING COMPUTATIONAL LEARNING LEARNING THEORY TO TESTING
The ability within Computational Learning Theory to place an upper bound on the number of
data-points required to guarantee an accurate model is highly pertinent from our random testing
perspective. Given the established relationship between Testing and ML (Section 2.3), this implies
that it should be possible to apply the same bounds to the number of tests required to reliably test
a software system.

In the remainder of this section, we join these concepts together. We show how the PAC bounds
that apply to Boolean conjunctions can be used to bound the number of random tests required
to ensure (subject to PAC parameters) Relevant Coverage. We start in Section 4.1 by formalizing
the relationship between Inference Adequacy and PAC learning. In Section 4.2 we show how Hit
Spectra can serve as a useful, learnable encoding of test cases, and how these relate to the challenge
of Boolean conjunction inference. This is followed by a discussion of some caveats and assumptions
that apply to the approach in Section 4.4, and finally by a worked example in Section 4.3.

4.1 Inference Adequacy for Random Testing as a PAC Learning Problem
The main correspondences between inference adequacy and PAC are summarized in Table 1. There
are two noteworthy distinctions between the two. Firstly, inference adequacy does not make any
presumptions about the process used to generate the test set (the data source in Table 1); 𝑂𝑏𝑠 can
in principle be any test set. For PAC, training samples are selected i.i.d. from a fixed distribution.
This distribution enables the calculation of the sample-complexity (thanks to the ability to apply
the Chernoff Bounds [37]). Secondly, the inference adequacy definition focuses on the inference of
some concrete model𝑀 , whereas PAC is concerned with an entire hypothesis class of models 𝐻 .

If we can guarantee that tests are sampled from a fixed distribution, then we can apply the PAC
bounds in a testing context. This is straightforward for random testing: the random test generation
definition randomTests : 𝐼 ×𝐷𝐼 ×𝑛 → 𝑇 corresponds to the definition of 𝑠𝑎𝑚𝑝𝑙𝑒 in the PAC context.
If we restrict attention to tests generated by randomTests, then the training set used can be

re-defined as a function, analogously to the definition of 𝑡𝑟 (Definition 3.3):

Definition 4.1. 𝑡𝑟𝑟𝑛𝑑 : randomTests × 𝑠𝑢𝑡 → 𝑇𝑆 , where 𝑇𝑆 is as defined in Definition 3.3.

We can then interpret hypothesis class 𝐻 as the set of all possible mappings 𝐼 → 𝑂 (analogous to
Definition 3.4). This, then, enables us to characterize random testing in terms of PAC-learnability.
As per Definition 3.8, if 𝐻 is PAC-learnable, it is possible to apply the sample-complexity function

3For this specific learning task there is a slightly tighter bound defined by Kearns and Vazirani [37], but we opt for this
more generally applicable limit for the purposes of this paper.
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Table 1. Key correspondences between Inference Adequacy and the PAC framework.

Inference Adequacy PAC

Data 𝐼 , 𝑂
Inputs and outputs

𝑋 , 𝑌
Examples and labels

Data source 𝑠𝑎𝑚𝑝𝑙𝑒 : 𝑋 × 𝐷𝑋 ×𝑚 → 𝑆

(Definition 3.1)

Labeling procedure 𝑠𝑢𝑡 : 𝐼 → 𝑂

(Definition 2.3)
𝑙𝑎𝑏𝑒𝑙 : 𝑋 → 𝑌

(Definition 3.2)

Training set Observation trace 𝑂𝑏𝑠
(Definition 2.4)

𝑡𝑟 : 𝑠𝑎𝑚𝑝𝑙𝑒 × 𝑙𝑎𝑏𝑒𝑙 → 𝑇𝑆

(Definition 3.3)

Inference
infer : 𝑂𝑏𝑠 → 𝑀 where

𝑀 : 𝐼 → 𝑂

(Definition 2.5)

𝐿 : 𝑇𝑆 → 𝐻 where
(Definition 3.5)

𝐻 is all possible mappings 𝑋 → 𝑌

(Definition 3.4)

𝑚𝐻 described in Section 3.2. In the testing context, this provides us with an upper-bound on the
number of tests required to guarantee inference-adequacy with respect to parameters 𝜖 and 𝛿 .

To apply this limit in practice, we need to be able to determine the size of the hypothesis space
|𝐻 |. However, as discussed in Section 2.3, current inference-adequacy approaches are based on the
inference of models of software behavior and there is no one-size-fits-all approach to determining
|𝐻 |. Furthermore, the range of hypothesis classes that have been shown to be PAC-learnable is very
restricted. Even conceptually simple notions such as the potential sequencing of events as expressed
by finite state machines are not PAC learnable [23, 37], unless significant additional assumptions
are made about the learning context [2]. Accordingly work on relating PAC to testing by Zhu et al.
[65] and Romanik et al. [53], was restricted to fragments of programs or highly restricted types of
programs.

4.2 Hit Spectra as a Basis for Inference Adequacy
We are specifically interested in reasoning about the number of tests that are required to reach a
saturation point (see Section 2.2.2). Given that saturation is defined as the point at which there are
no further increases in code coverage, we are particularly interested in capturing program behavior
in such a way that relates test executions to coverage.

4.2.1 Encoding Tested Behavior with Hit Spectra. This is where Program Spectra (and specifically
Hit Spectra) play an important role for us. Hit spectra explicitly relate test executions to statements
that are (resp. are not) covered. They are very simple, can be generated automatically, and capture
all of the information that would be required in practice to determine whether testing has reached a
saturation point. The value of hit spectra for reasoning about tested behavior has been demonstrated
in recent work by Bertolino et al. [5].

To encode tested behaviors in the form of a hit spectrum, we adopt Definition 2.2. The resulting
hit spectrum 𝐻𝑆 is a binary matrix, where each row represents a single test execution and each
column represents a code element. For each test execution (row), a column has a 1 if the element is
covered by the test case, and a 0 otherwise.
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1 int tri_type(int a, int b, int c) {

2 int type = NOT_A_TRIANGLE;

3 if (a > b)

4 int t = a; a = b; b = t;

5 if (a > c)

6 int t = a; a = c; c = t;

7 if (b > c)

8 int t = b; b = c; c = t;

9 if (a + b > c)

10 type = checkType(a,b,c);

11 return type;

12 }

13

14 int checkType(int a, int b, int c) {

15 int type;

16 if (a + b <= c)

17 type = NOT_A_TRIANGLE;

18 else {

19 type = SCALENE;

20 if (a == b && b == c)

21 type = EQUILATERAL;

22 else if (a == b || b == c)

23 type = ISOSCELES;

24 }

25 return type;

26 }

Fig. 1. Triangle classification source code.

It is worth emphasizing that, using this abstraction of behavior, we do not need to consider
inputs and outputs. A test execution can be conceptualized entirely in terms of the statements that
it does / does not cover. Since we are in a setting where the test cases are selected at random from
some distribution 𝐷𝐼 , there is no need to reason about inputs.

4.2.2 Framing Relevant Coverage as a Boolean Conjunction Learning Problem. Our objective is to
determine the number of tests that are required to reach a saturation point – the point at which
there is no change in code coverage. In terms of the Hit Spectrum, the saturation point happens at
the point at which the addition of tests (rows in the Hit Spectrum) does not lead to any columns
(representing code elements) being assigned a value of 1 if previously all of their values have been
0.

In this, there is a direct mapping to the Boolean Conjunction inference setting (Section 3.3). If we
consider Relevant Coverage (Section 2.2.3), the set of statements that are relevant for some input
distribution 𝐷𝐼 are those that are executed by at least one of the test cases from 𝐷𝐼 . Conversely,
the statements that are not relevant is the set of statements that are never executed by any of the
test cases. For a program with 𝑛 code elements in total, the subset of relevant statements can be
expressed in the form of a conjunction of 𝑛 boolean variables 𝑥1, . . . , 𝑥𝑛 . For example, for 𝑛 = 3, a
conjunction 𝑥1 ∧ ¬𝑥3 would indicate that statement 1 is executed by all of the tests, 𝑥2 is not in the
conjunction because it is covered by some but not all of the tests, and 𝑥3 is not covered by any of
the tests (and is therefore not considered a part of the Relevant Coverage).

4.2.3 Computing a Bound on the Number of Tests. We know that Boolean conjunctions are PAC-
learnable [58], and that we are therefore able to derive a sample-complexity. In our testing context,
we know the number of Boolean literals that might exist in our conjunction - any of the 𝑛 code ele-
ments in our program. This means that the hypothesis space |𝐻 | = 𝑛3 (see Section 3.3). Accordingly,
the upper bound on the number of test cases can then be obtained by Equation 3.

4.3 Worked Example: The Triangle Classification Problem
To illustrate the approach, we will use the classical triangle classification example. The version

we use (Listing 1) includes an unreachable statement: Line 17 (setting the return variable to indicate
that the triangle is not valid) in the checkType function can never be executed because the predicate
at line 9 in the tri_type client function only allows the call to checkType to occur if the triangle
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Table 2. Illustration of the inference process, as applied to the triangle example. ‘T’ and ‘F’ indicate whether
the element is covered for that given input. Shaded cells indicate that the inference algorithm has deleted
that boolean literal from the hypothesis.

𝑖 a b c 𝑥1−3 𝑥1−3 𝑥4 𝑥4 𝑥5 𝑥5 𝑥6 𝑥6 𝑥7 𝑥7 𝑥8 𝑥8 𝑥9 𝑥9 𝑥10 𝑥10 𝑥11 𝑥11 𝑥14−16 𝑥14−16 𝑥17 𝑥17 𝑥18−20 𝑥18−20 𝑥21 𝑥21 𝑥22 𝑥22 𝑥23 𝑥23 𝑥25 𝑥25
0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 1 1 3 T F F T T F F T T F F T T F F T T F F T F T F T F T F T F T T F
2 5 9 9 T F F T T F F T T F F T T F T F T F T F F T T F F T T F T F T F
3 4 5 7 T F T F T F T F T F T F T F T F T F T F F T T F F T T F F T T F
. . . . . . . . .
199 2 8 8 T F F T T F T F T F T F T F T F T F T F F T T F F T T F T F T F

is valid. Using conventional statement coverage, the goal of 100% coverage would be unachievable.
If we wanted to apply Miranda and Bertolino’s ‘relevant coverage’ [45] (Section 2.2)4, we would
need some way of determining that line 17 should not be ‘in scope’.

Test execution representation. Each test is represented as a list of 𝑛 Boolean literals 𝑥1, . . . , 𝑥𝑛 ,
where 𝑛 corresponds to the number of test objectives in the program under test. For a given test,
any statement 𝑥𝑖 that is not executed is assigned false, and any statement that is executed is true.

Applying the Boolean Conjunction inference algorithm to Coverage Spectra. We sample our tests
from a uniform distribution over parameters a, b and c, where each parameter is in the range 1 to
105. The full generated test set along with coverage results is available online6.

Table 2 illustrates the state of the hypothesis ℎ for each test execution. The ‘T’ and ‘F’ in each
cell represent whether or not the boolean literal in question has been satisfied for that test case (i.e.
whether the code element corresponding to the literal has been covered by that test case). Literals
that are deleted from ℎ (i.e. evaluate to false for any of the tests executed so far) are shaded. The
algorithm starts with ℎ containing the conjunction of all of the boolean literals. This is represented
for row 𝑖 = 0. Then, for the first input (𝑖 = 1), any boolean literal that does not hold is removed.
In this case statements 2 and 3 are executed (𝑥1−3 = 𝑇 ). Its negation 𝑥1−3 evaluates to false, which
means that it is removed from the hypothesis (shaded in the table), etc.

Hypothesis size. The most important question for this paper is: how many of these tests do we
need to execute in order to guarantee (at least in a PAC context) that the algorithm will finish with
an accurate result? And by extension - how many of these tests do we need to execute to convince
ourselves that our test set is inference-adequate?
For this specific learning problem, we know that |𝐻𝑛 | = 3𝑛 [37, 58] (see Sections 3.3 and 4.1).

As 𝑛, we choose the number of theoretically executable lines of code in the system (the actual
number is undecidable [62], and this is what the algorithm would seek to infer). To save space, we
group statements together that we know sit in the same control-flow block and therefore must
be executed together (e.g. 𝑥1−3)7. There are 𝑛 = 16 blocks, so |𝐻16 | = 316 = 43, 046, 721. For this
example we want to guarantee that the result has a maximum error of 10% (𝜖 = 0.1), and that the
probability of achieving this is 90% (𝛿 = 0.1). Putting this into Equation 3, we get upper bound:

4Miranda and Bertolino actually make a distinction between statements that are unreachable, and statement that are
irrelevant to 𝐷𝐼 , and explicitly focus on the latter. In our case we consider both; we are only interested in statements that
are relevant to the usage context, and executable.
5Our choice of range is somewhat arbitrary for the purposes of this illustration, and the nuances involved in setting the
parameters for an input distribution are discussed elsewhere [3, 29]
6https://docs.google.com/spreadsheets/d/e/2PACX-1vRa_xuroS6AJIWNLPFD3gBPxjUZv-5b1FSIW4a6-USILPpJjPZ-
RTM5-dbsboFA91YpLxNR4k1ONZWs/pubhtml
7This is not a vital part of the process.

https://docs.google.com/spreadsheets/d/e/2PACX-1vRa_xuroS6AJIWNLPFD3gBPxjUZv-5b1FSIW4a6-USILPpJjPZ-RTM5-dbsboFA91YpLxNR4k1ONZWs/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRa_xuroS6AJIWNLPFD3gBPxjUZv-5b1FSIW4a6-USILPpJjPZ-RTM5-dbsboFA91YpLxNR4k1ONZWs/pubhtml
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𝑚 ≥ 1
0.1

(𝑙𝑛(43, 046, 721) + 𝑙𝑛(1/0.1)) = 198.8038

As tests are executed, an increasing number of boolean literals are eliminated from ℎ. Most of the
eliminations take place within the first few tests. By test 𝑖 = 3, there is just one boolean literal that
is falsely true; the literal 𝑥21 indicates that the line ‘type = EQUILATERAL;’ will never be executed.
This is eventually corrected by test 𝑖 = 112. By the last test (𝑖 = 199) that we sample (using the
upper bound computed above), we end up with the following conjunction:

𝑥1−3 ∧ 𝑥5 ∧ 𝑥7 ∧ 𝑥9 ∧ 𝑥11 ∧ 𝑥17 ∧ 𝑥25

This result can be interpreted as follows. Any positive boolean literal (e.g. 𝑥1−3) corresponds to
a statement (or block of statements in this case) that is always executed for any execution of the
usage profile (i.e. is ‘relevant’ in Miranda and Bertolino’s terminology [44]). Any negative literal
(e.g. 𝑥17) corresponds to the statement that is not relevant for the usage profile. In this case, 𝑥17
corresponds to the statement that we know can never be executed in our usage context.
Thus we have inferred what Miranda and Bertolino would refer to as the ‘usage scope’ of the

triangle program. In our example, the error in our result happens to be 0 (as per our manual
inspection). The question then arises, however, to what extent is this a ‘fluke’? Perhaps our result
(which we have inspected and know to be accurate) is merely due to a lucky sample from our input
distribution 𝐷𝐼 . This chance is however factored into our bounds with the 𝛿 parameter (which we
set to 0.1). We therefore know that if we repeated this exercise 100 times with different random
seeds, in at least 90 of these (the probability represented by 1 − 𝛿) the test sets that we produce
would lead to a model with at least an accuracy of 90% (the accuracy represented by 1 − 𝜖).

It is important to bear in mind that we only illustrate the steps of the inference process to explain
the underlying rationale for our adequacy criterion. In practice, no inference or test executions are
required and we do not need to actually infer a model. We are instead interested in the theoretical
bounds that provide us with the guarantee of accuracy if we were to run this algorithm.

4.4 Caveats and Properties
The approach has some interesting properties, but is also subject to a variety of caveats. These are
discussed below.

The Relevant Coverage will vary according the input distribution, but the bound on the saturation
point will not. The PAC framework is ‘distribution free’ [37], which means that its results apply to
any data distribution. In our context, the specific choice of operational profile used to generate the
test inputs does not matter.
For example, for our triangle example, with each value a, b, and c being sampled from the

interval [1,10], the probability of obtaining an input corresponding to an equilateral triangle (where
𝑎 = 𝑏 = 𝑐) is 0.1 ∗ 0.1 = 0.01 (this was fortuitously triggered in our example test cases). If, instead,
we sampled the inputs from an interval of [1,100], the likelihood of obtaining an equilateral or an
isosceles triangle would be much lower (the probability of obtaining an equilateral triangle would
be 0.01 ∗ 0.01 = 0.0001). Nevertheless, the number of tests for the saturation point remains the same
(199), precisely because the likelihood of additional tests covering an additional 10% of statements
(our choice for 𝜖) is highly improbable, certainly less than 10% (our choice for 𝛿).

The approach is agnostic with respect to the logical structure of the source code. The saturation point
for any system can be calculated from only knowing the number of code elements (i.e. statements
or branches) in the system, or even just being able to place an upper bound on this number. No
source code analysis is required (aside from the ability to count the overall number of statements
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or branches, depending on the chosen granularity of coverage). The approach does not rely on the
actual capability to track test coverage, to encode test executions in a Hit Spectrum, or to infer
Boolean Conjunctions. These form the theoretical base that enables us ultimately to justify the use
of the formula (Equation 3), using the number of coverage targets to compute the hypothesis space.

The logical code structure will of course have an effect on the level of coverage that is achieved
at the point of saturation. The execution of a branch or a statement may be subject to combinations
of predicates (e.g. controlling the execution of loops or if-statements) that can only be satisfied
by highly specific constraints on inputs. Such conditions (such as the code that is executed in the
event of an equilateral triangle in our example) may be more or less probable, depending on the
input distribution 𝐷𝐼 .

Such situations can potentially affect the reliability of our bound. If a condition has a very small
probability of being satisfied by inputs in 𝐷𝐼 , but its execution results in a difference in coverage
that is greater than 𝜖 , this could lead to situations where the bound is unreliable. We suspect that
this situation occurs in a small fraction of instances in our evaluation (see Section 5.2), and are
investigating the implications for the bound as part of our future work.

Assumptions about the input distribution 𝐷𝐼 . There are several ways by which to characterize
the input distribution 𝐷𝐼 in a random testing context. It may be manually constructed in the form
of an operational profile [49]. It may be implicit in the form of a test generator that can generate
quasi-randomized test-inputs, as embodied by random testing frameworks such as QuickCheck
[14]. We use a simple random number generator for the three parameters in our triangle example.
For the part of our evaluation that tests object-oriented components, we use a modified version of
EvoSuite as a random input generator.

This task of test generation – of trying to find inputs that will fully exercise the program under
test – is complementary to our task of determining when a point of saturation is reached and
we can stop. In principle, given a situation where a test generator produces a larger number of
candidate test cases than are feasibly executable, our approach can determine how many tests need
to be sampled (at random) to reach saturation. We can, for example, consider a setting where we
know only the input parameters and the number of statements or branches (but do not know how
these parameters can affect the program state or the coverage of statements). In this setting, one
could opt to use a Combinatorial Testing approach [50]. Since these approaches can produce larger
numbers of tests than can be feasibly executed, our approach would provide a number that would
need to be sampled to reach saturation.
Regardless of the approach used to generate the distribution of test inputs, it is important that

this distribution remains fixed during the test selection process. The act of selecting or generating
an input must not change the probability of selecting a subsequent input, because this would
invalidate the ‘Invariance Assumption’ [57] required for PAC guarantees to hold. This constraint
means that our approach cannot be used in a feedback-directed way, where tests are generated or
selected on the basis of observations made of other tests.
Finding an approach to computing a PAC bound that can involve feedback has been done for

certain settings within Machine Learning [2, 57]. Recently, the relatively recent emergence of
PAC-Bayes [42] (a dynamic generalization of the PAC framework) has enabled the application
of bounds to more dynamic learning problems [28]. We are looking into the adaptation of these
approaches to accommodate feedback-driven testing techniques, and this forms a part of our future
work (Section 7).

The bound only applies to saturation in terms of code coverage, but does not account for changes
in test adequacy that may depend on heap or data-state. The accuracy of our approach rests on
the assumption that code coverage is a good approximation of tested behavior. In practice, this
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has to be treated as a significant caveat, and the pitfalls of code coverage have been the subject
of a significant amount of research [10, 33]. Basic code coverage as captured in the Hit Spectrum
ignores factors such as data state, or looping behavior. There are more granular program spectra
that subsume the hit spectrum (such as execution count spectra [31]). However, using these would
require a different PAC inference algorithm, and exploring improved spectrum representations and
PAC algorithms is part of our future work.

A one-to-many relationship exists between test executions and test objectives. This is fine if the test
objectives in question are traditional code-based targets such as statements or branches. However,
our bound does not apply in situations where test objectives require multiple test cases to be
evaluated, as is the case in statistical metamorphic testing for example [27].
One implication of one-to-many relationship between tests and objectives is that we allow for

interdependent test objectives. For example, if the execution of one statement is controlled by a
predicate, then there is a dependence between the two. This is noteworthy because interdependen-
cies are not permitted by the only other bound on random test sets that we are aware of. Arcuri
and Briand’s lower-bound [3] requires that test objectives are entirely independent from each other
– i.e. that there must exist a strict one-to-one relationship between tests and objectives.

5 EVALUATION
In this evaluation we seek to establish the reliability of the bound that is computed, and the
relationship to the 𝜖 and 𝛿 parameters. Our research questions are as follows:

• RQ1: What is the relationship between the parameters 𝜖 and 𝛿 , the number of test objectives,
and the bound on the number of tests?

• RQ2: Is the bound reliable with respect to statement coverage?
• RQ3: Is the bound reliable with respect to the number of faults that are exposed?

5.1 Methodology
Our evaluation consists of three studies. The first study focuses on RQ1 and is a functional analysis
of the bound function (Equation 3) to examine the relationship between the parameters and the
bound. The second study explores RQ2 with respect to system tests by examining the relationship
between the number of tests executed and the statement coverage on the CARLA driving simulator
[15] and TCP autonomous driving system (ADS) [64]. The third study explores RQs 2 and 3 by
establishing the relationship between the number of randomly generated unit tests (as opposed to
system tests) and both statement coverage and mutation scores for 7,198 Java classes. We make our
experimental materials available online8.

5.1.1 Study 1: Exploring the functional relationship between 𝜖 and 𝛿 , the number of test objectives,
and the bound on the number of tests. To understand the relationship between the bound and the
parameters, we start by considering a fixed number of coverage objectives (used an arbitrary value of
20; although the calculated bound varies for different values, the relationship to 𝛿 and 𝜖 does not). We
then plot the change in bound for 𝛿 = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5] and 𝜖 = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5].
We choose values of 0.01 instead of 0 because values must be positive. We then plot the relationship
in three dimensions.

To gain an understanding of how the bound scales for different numbers of coverage objectives,
we used two configurations: (𝛿 = 0.1, 𝜖 = 0.1) and a more strict (𝛿 = 0.05, 𝜖 = 0.05). For each
configuration we plot the bound for coverage objectives in the range from 0 to 1,000,000.

8https://anonymous.4open.science/r/RTLT.

https://anonymous.4open.science/r/RTLT
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5.1.2 Study 2: Testing an ADS within the CARLA Simulator. CARLA [15] is a popular simulation
framework implemented in Python to support the development and validation of ADSs. The CARLA
GitHub repository9 has over 9000 stars and 3000 forks. It presents an interesting case study for us
because individual test executions (i.e. simulations of a car driving through a scene) are resource-
consuming and can require several minutes to complete. As such, there is a natural motivation to
determine the point at which a saturation-point is reached and testing can be terminated.

CARLA provides a range of configurable entities, such as weather conditions, traffic lights, and
pedestrians. There is also a leaderboard10 to compare the performance of different ADSs, which
currently has 30 entries. Submitted ADSs are required to drive from the starting point to the
destination point in a set of predefined scenarios. They are then assigned a score based on how
much of the route they completed and any infractions (such as collisions) they committed.
In this work, we use TCP as our ADS as it was the highest entry on the leaderboard for which

code was available and functional at the time we ran our experiments. For our study, we gathered
a set of 2400 executions of TCP by running the default training set for TCP. This consists of 300
routes each for eight of the predefined urban driving environments in CARLA.

For each execution, we gathered statement-wise coverage information for all of the Python files
within both CARLA and TCP using the Python coverage module. We discarded any files where
none of the statements were executed by any of the test executions. For each of the remaining 48
files, we calculated the upper-bound on the number of tests using Equation 3 (we fixed parameters
𝛿 = 0.1 and 𝜖 = 0.2). We then took a random sub-sample (with replacement) of the test-executions
(where the size was determined by the bound) from the 2400 tests, and measured the coverage that
was specific to this sub-sample. This was repeated 50 times to accommodate any random variation.

For the results, we calculated the mean coverage, and the upper- and lower confidence intervals.
If our upper-bound is reliable (as per RQ2), then coverage should not increase if further tests are
added to the test set. To establish this, we compared the coverage for each sub-sample against the
coverage that was obtained from all 2400 test executions.

5.1.3 Study 3: Running random tests on Java units. We adopted the popular EvoSuite test generation
tool [19] to act in effect as a random test generator. We do so by disabling all its feedback/guidance
capabilities (used for search-based testing). As such it becomes a tool that will generate inputs
for Java units that are effectively sampled from a uniform distribution. As our subjects we used a
sample of 7,198 Java classes from the SF110 corpus borrowed from a previous large-scale study
on unit test generation for Java [20]11. The SF110 corpus comprises 110 open-source Java projects
totaling more than six millions of lines of code.
We calculated a bound 𝑏 using Equation 3, using the number of statements in the target class

as the basis for computing the hypothesis size. We fixed parameters 𝛿 and 𝜖 to 0.1. In principle
this means that, for a given target, after executing 𝑏 tests, 90% of the time, the statement coverage
achieved should be within 10% of what is achievable from that distribution.
To explore whether this is the case (i.e. to answer RQ2), we generated two random test sets for

each target with EvoSuite. We generated a test set (which we denote 𝐵) containing 𝑏 tests. In order
to establish the reliability, we also generated a larger test 𝐿 set with 2 ∗ 𝑏 tests.

For all of the test sets we gathered statement coverage and mutation coverage metrics. In order
to accommodate the randomness in the generation process (and the mutation testing), we repeated
each test generation and execution process 10 times on different random seeds.

9https://github.com/carla-simulator/carla
10https://leaderboard.carla.org
11https://www.evosuite.org/experimental-data/sf110

https://github.com/carla-simulator/carla
https://leaderboard.carla.org
https://www.evosuite.org/experimental-data/sf110
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(a) Relationship between 𝛿 , 𝜖 and number of
tests for a system with 20 test objectives.

(b) Relationship between number of test ob-
jectives and bound on the number of tests.

Fig. 2. The relationships between 𝛿 , 𝜖 , the number of test objectives, and the bound on the number of tests.

In order to answer RQ2, we record the proportion of SUTs for which the median difference in
statement coverage between 𝐵 and 𝐿 is more than 10%. For the bound to be reliable, this should be
the case for a vast majority of cases.
In order to answer RQ3, we repeated the above analyses, but analyzing the mutation coverage

instead. Again, we calculate the proportion of systems where the mutation score remains unchanged
between 𝐵 and 𝐿.

5.2 Results and Discussion
RQ1: Relationship between 𝛿 , 𝜖 , the number of test objectives, and the bound on the number of tests.
The relationship for a fixed number of test objectives (20) is shown in Figure 2(a). This shows that
the number of tests is much more sensitive to 𝜖 than it is to 𝛿 . There is a sharp increase in the
bound as 𝜖 tends towards 0. For this reason we only include values in the chart for 𝜖 ≥ 0.01.
Figure 2(b) shows that, for a given choice of parameters 𝛿 and 𝜖 , the bound on the number of

tests is linear. The gradient of the line reduces for larger values of 𝛿 and (in particular) 𝜖 . This is to
be expected; if we tolerate a larger degree of error in the hypothetical boolean conjunction that
would be inferred from the test set, fewer tests would be required by the inference algorithm.

The exponential increase in the number of tests required with respect to 𝜖 aligns with the
established understanding of the efficacy of random tests. As the test set grows, the number of
test cases that are capable of exposing ‘new’ behavior, potentially covering aspects of the program
that are as of yet uncovered, and potentially exposing faults, will diminish. The point at which this
happens has been referred to as the “saturation point” for random testing [41]. The exponential
nature of the decay aligns with findings by Böhme and Paul [7], who showed that the number of
faults detected by random testing decays exponentially over time.

It is worth remarking on the size of the bound. The requirement to execute millions of tests (as
would be required for non-trivial systems in Figure 2(b)) may be implausible for many systems –
especially with long execution times. However, in other cases this is not a problem. For example, at
the time of publishing their paper on the random testing of flash storage devices at NASA [26], the
random testing system developed by Groce et al. had executed 3.5 billion tests.
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Table 3. Coverage results for CARLA/TCP. Size refers to number of statements. Bound refers to our upper
bound. “Cov. (all)” refers to the coverage from running all 2,400 tests. “Cov. (bound)” refers to median coverage
from running the bounded test sets. Δ is the difference between “Cov. (bound)” and “Cov. (all)”.

File Size Bound Cov. (all) Cov. (bound) 95% CI Δ
basic_agent.py 128 714.62 0.1 0.1 [0.1,0.1] 0
controller.py 216 1198.01 0.09 0.09 [0.09,0.09] 0
global_route_planner_dao.py 79 445.46 0.41 0.41 [0.41,0.41] 0
misc.py 163 906.88 0.11 0.11 [0.11,0.11] 0
autonomous_agent.py 126 703.64 0.29 0.29 [0.29,0.29] 0
checkpoint_tools.py 77 434.48 0.31 0.31 [0.31,0.31] 0
result_writer.py 116 648.71 0.53 0.53 [0.53,0.53] 0
route_indexer.py 72 407.01 0.64 0.64 [0.64,0.64] 0
route_manipulation.py 160 890.4 0.48 0.48 [0.48,0.48] 0
planner.py 113 632.23 0.57 0.57 [0.57,0.57] 0
run_stop_sign.py 157 873.92 0.57 0.56 [0.56,0.56] 0.01
torch_layers.py 114 637.72 0.31 0.31 [0.31,0.31] 0
torch_util.py 104 582.79 0.16 0.16 [0.16,0.16] 0
config_utils.py 148 824.49 0.14 0.14 [0.14,0.14] 0
rl_birdview_wrapper.py 142 791.53 0.09 0.09 [0.09,0.09] 0
traffic_light.py 199 1104.63 0.48 0.48 [0.48,0.48] 0
transforms.py 128 714.62 0.18 0.18 [0.18,0.18] 0
route_scenario_configuration.py 50 286.17 0.24 0.24 [0.24,0.24] 0
scenario_configuration.py 86 483.92 0.5 0.5 [0.5,0.5] 0
actor_control.py 154 857.44 0.14 0.14 [0.14,0.14] 0
basic_control.py 106 593.78 0.15 0.15 [0.15,0.15] 0
external_control.py 43 247.71 0.16 0.16 [0.16,0.16] 0
npc_vehicle_control.py 106 593.78 0.13 0.13 [0.13,0.13] 0
pedestrian_control.py 71 401.52 0.13 0.13 [0.13,0.13] 0
timer.py 158 879.42 0.36 0.36 [0.36,0.36] 0
traffic_events.py 84 472.93 0.42 0.42 [0.42,0.42] 0
watchdog.py 79 445.46 0.32 0.32 [0.32,0.32] 0
weather_sim.py 166 923.36 0.19 0.19 [0.19,0.19] 0
control_loss.py 198 1099.14 0.47 0.47 [0.47,0.47] 0
junction_crossing_route.py 203 1126.6 0.14 0.14 [0.14,0.14] 0
maneuver_opposite_direction.py 172 956.32 0.1 0.1 [0.1,0.1] 0
other_leading_vehicle.py 151 840.97 0.11 0.11 [0.11,0.11] 0

RQ1 Answer: The bound is strongly affected by 𝜖 , particularly for 𝜖 < 0.2. The impact of changing
𝛿 is less than that of 𝜖 , and is more pronounced for smaller values of 𝜖 . The bound increases
linearly with the number of test objectives for a given configuration of 𝜖 and 𝛿 .

RQ2: Reliability with respect to statement coverage.

Results from study 2 (CARLA). The results from the CARLA study are summarized in Table 3. We
restricted our study to files with at least twice as many tests as the bound in our overall sample (we
had 2,400 executions of CARLA overall, so we omit any file for which the bound exceeds 1,200).
In all cases, the coverage achieved by test sets that are sampled with the size of our bound, and
the complete test set (at least twice as large) is the same. The confidence intervals are narrow (the
precise coverage value), indicating no variability over the course of the 50 samples per SUT.
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(a) SUT sizes versus coverage difference. (b) Difference in mutation score versus cov-
erage.

Fig. 3. Plots of the difference between test sets of size 𝑏 and 2 ∗ 𝑏 with respect to statement coverage and
mutation score from Study 3.

Results from study 3 (Java units). For the Java units, in 335 cases (4.7%) of cases, our test generation
executions timed-out after 240s, ran out of memory or crashed. We omit these cases from the figures
in the rest of our discussion. We compare the coverage between the test sets that were bounded
at our upper bound (𝑏), and those that contained 2 ∗ 𝑏 test cases. The mean difference across all
random seeds is 0.3% (of statements). The 95% confidence interval for the difference overall is [0.03
0.03]. A Wilcoxon Rank Sum test comparing the numbers of statements covered by the test sets
with 𝑏 and 2 ∗ 𝑏 tests returns a 𝑝−value of 1, indicating no substantive difference in distribution.

Since we set 𝜖 to 0.1, we would expect the median difference in coverage between the two test
sets to be below or equal to 0.1 (i.e. a difference in coverage of less than 10% of the total number of
statements in the SUT) across all random seeds. This was the case for 99.7% of the SUTs.

In 22 SUTs (0.3% of classes tested), this was not the case. One factor that stands out about these
cases (as shown in Figure 3) is that they tend to be larger than the rest of the classes. For those
where the difference is > 0.1 the median number of coverage targets is 129, whereas for the others
the median number is 14. This is however not a determining factor, because the bound holds well
for numerous larger classes, up to a maximum of 1685 statements.
One possible explanation (which we will explore further in future work) is that these systems

may contain significant portions of code that are only executed under specific conditions, fulfilled
by a fractionally small proportion of test cases in the input distribution. This would indicate that
our bound would be better suited to testing contexts where tests are selected from an operational
profile [49] than the uniform distribution employed by tools such as EvoSuite.

RQ2 Answer: The bound is reliable with respect to statement coverage. It held across all of the
analyzed CARLA files, as well as 99.7% of the Java SUTs.

RQ3: Reliability with respect to exposing faults. In order to examine the reliability with respect to
exposing faults, we examine the mutation data gathered during study 3 (Java unit test executions).
As was the case with the statement coverage, we compare the mutants exposed for test sets of size
𝑏 (the computed bound) against test sets of size 2 ∗ 𝑏.

Our results are similar in nature as for RQ2. In 99.6% of cases, the difference in mutation score
between the two test sets was less than 10%. The 95% confidence interval for the difference is
[0.001,0.002]. This suggests that, for test sets that are larger than the upper bound 𝑏, the number of
faults exposed will tend to remain the same.

In 27 cases (0.4%) there was however a more significant difference in mutation score. The classes
for which this occurs tend to be those classes for which there is also a difference in statement
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coverage (a relatively strong correlation of 0.87), as shown in Figure 3(b). This relationship is to be
expected, since the execution of source code is a necessary precondition for exposing a mutant.

RQ3 Answer: The results indicate that the bound is robust with respect to faults exposed by the
test set. Across the SUTs from study 2, the difference in mutation score between bounded test
sets and those that were at least twice as large was negligible.

5.3 Threats to Validity
Threats to internal validity. In both studies 2 and 3, in order to evaluate the reliability of the

bound, we compared the coverage achieved against test sets that are at least twice the size of the
bound. An inherent threat is that a larger test set sampled from the same distribution would lead to
different levels of coverage (and mutation scores). As part of our future work, we will replicate our
studies with larger test sets to evaluate against.

Threats to external validity. Our studies focused on two specific types of system (Java units
and an automated driving system), with respect to two specific types of test distribution (selected
through EvoSuite and the TCP test suite respectively). Although our results are consistent across
these two very different contexts, in our future work we will investigate other types of systems to
ensure that the results generalize.
Our conclusions from RQ3 (reliability with respect to the ability to expose faults) are based on

the use of mutation testing. For this we used the mutation engine built into EvoSuite. This gives
rise to the threat that the mutants used here are not reflective of genuine faults. Our future work
will focus on replicating this study on curated sets of faults, such as Defects4J [36].

6 RELATEDWORK
Goldreich et al. [24] investigated the relationship between PAC-learning and ‘property testing’.
They consider a specific graph-theoretical context, where the program in question manipulates a
graph and the goal is to check that the output conforms to particular properties (e.g. is bipartite,
etc.). They adopt a PAC-learning inspired approach to place limits on the number of tests that
would be required to offer statistical guarantees that the graphs adhere to particular properties.

Chen et al. [12] modified Angluin’s 𝐿∗ algorithm to infer automata of software systems for formal
verification [2]. They exploit the fact that 𝐿∗ is a PAC algorithm to make statistically justifiable
guarantees about the correctness of the properties that they verify, and are able to apply Angluin’s
original PAC upper-bound to the number of tests required. They present a good example of how
PAC bounds can be used for test bounds, but are restricted to the specific situation where the
system and its correctness properties can be modeled as a finite state automata.
As discussed in Section 2.3, there have been several attempts to relate inference adequacy to

PAC. In addition to the more theoretical contributions made by Zhu et al. [65, 66] and Romanik
and Vitter [52, 53] (discussed previously), there has also been work by Fraser and Walkinshaw to
apply PAC inference adequacy in an entirely empirical context [21]. They do not use PAC bounds
to establish a limit on the number of tests required.
One inherent limitation of the approaches discussed above is the need to characterize testing

complexity in terms of input and output. Although this can work well for programs with input-
output behaviors that are well understood, such as real numbers or graphs, this can become
challenging to reason with when the input or output space involves complex types, or where the
types of rules that govern the relationship between input- and output are not known, or are not
known to be PAC-learnable. Consequently, the underlying complexity measure for a program can
be difficult to accurately compute [53], which means that the test set is difficult to bound.



112:20 Neil Walkinshaw, Michael Foster, José Miguel Rojas, and Robert M. Hierons

In contrast, our approach conceptualizes the test execution behavior of a program in terms of the
code coverage spectrum. This means that we are creating a direct link to recognized test adequacy
concepts [5, 45]. It also means that we can characterize the PAC-learning problem as the task of
learning Boolean conjunctions, which provides us with our ability to produce bounds on test set
size that are computed from a finite hypothesis space, and these bounds tend to be much tighter
[37] than those that are computed using the Vapnik-Chervonenkis dimension [59].

7 CONCLUSIONS AND FUTUREWORK
We have shown that the saturation point – the number of tests beyond which there is a negligible
improvement in test coverage – can be bounded. This can be achieved from only knowing the
number of test goals (i.e. statements or branches) in the system under test. This provides an answer
to one of the fundamental questions in software testing of when to stop [18]. Our studies indicate
that this bound is reliable, both in terms of statement coverage and the ability to expose faults.
In the context of fuzzing, Böhme [6] points out that there is a lack of techniques that enable

testers to decide whether or not to stop testing. Questions around residual risk (the likelihood of
faults being uncovered by further tests) and the cost-benefit (the potential reward in running more
tests) are crucial. Although we do not deal with the situation of fuzzing in this paper (see below),
these questions nevertheless apply in any random testing context. We have shown how the tester
can obtain an answer to these questions. Crucially, this answer can be established before any tests
have been executed, just from knowing the number of statements or branches in the source code.

The use of this bound is subject to several caveats (see Section 4.4). Firstly, the distribution of tests
must be fixed, because PAC relies on the distribution “Invariance Assumption” [57]. Though fine for
conventional random testing, it rules out feedback-directed testing approaches such as evolutionary
testing and fuzzing. Recently, progress has been made to generalize the PAC framework to allow
for certain transformations in the distribution [55]. We will work to adapt these advances into a
testing context, to enable us to reason about test adequacy in a feedback-directed testing context.

A further noteworthy caveat of our technique is that it is tied to representing program behavior
in terms of a Hit Spectrum (because of the direct link to the PAC-learnable Boolean conjunctions).
Recently however, the emergence of the PAC-Bayes framework [42] has enabled the application of
PAC to algorithms that output distributions as opposed to simple classifications. This has enabled
bounds to be produced for a much broader range of learners including deep neural nets [17],
and causal graph discovery [38]. Our future work will investigate the application of these more
expressive types of models to offer a more general bound on random test set size.
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