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ABSTRACT

While watermarks for closed LLMs have matured and have been included in large-
scale deployments, these methods are not applicable to open-source models, which
allow users full control over the decoding process. This setting is understudied
yet critical, given the rising performance of open-source models. In this work,
we lay the foundation for systematic study of open-source LLM watermarking.
For the first time, we explicitly formulate key requirements, including durability
against common model modifications such as model merging, quantization, or
finetuning, and propose a concrete evaluation setup. Given the prevalence of these
modifications, durability is crucial for an open-source watermark to be effective.
We survey and evaluate existing methods, showing that they are not durable. We
also discuss potential ways to improve their durability and highlight remaining
challenges. We hope our work enables future progress on this important problem.

1 INTRODUCTION

As highlighted by recent AI regulations (CEU, 2024), watermarking of large language models (LLMs)
to track their outputs is an increasingly important research topic. Building on earlier work (Aaronson,
2023; Kirchenbauer et al., 2023; Kuditipudi et al., 2024), recently proposed methods (Dathathri
et al., 2024b) have been deployed in large-scale production systems (Google DeepMind, 2025),
showing that LLM watermarking is reaching maturity. Most existing methods are based on modifying
the decoding procedure of the LLM to imprint a later detectable watermark signal. As such, these
generation-time watermark mechanisms are designed for closed models served via an API.

Open-source LLM watermarking This makes most advancements in LLM watermarking fun-
damentally inapplicable to open-source models (OSM). Such models allow users white-box access,
including full control over the decoding procedure, which they can use to disable any generation-time
watermarking mechanism. This is becoming increasingly important as the gap between closed
and open models is narrowing—latest versions of Llama (Dubey et al., 2024), Qwen (Yang et al.,
2024), and DeepSeek (DeepSeek-AI et al., 2025) models have nearly surpassed the performance
of best closed-source models. If this trend continues, malicious parties will be able to circumvent
any watermarked API by using OSM to generate high-quality unwatermarked text. This makes
open-source model watermarking, i.e., the question of how model providers can embed watermarks
directly into their open-weight models, a key focus for the watermarking community.

Prior work While OSM watermarking has been recognized as one of the most critical problems in
GenAI security (Liu et al., 2023; Zhu et al., 2024; Zhao et al., 2024; Fernandez et al., 2024), it has not
been systematically studied. While there have been a few attempts to embed the watermark directly
into model weights (Christ et al., 2024a; Gu et al., 2024; Xu et al., 2024; Block et al., 2025), in many
works, the specific challenges of OSM watermarking are only a secondary focus. Even when OSM is
the main focus, there is a lack of clarity regarding problem formulation and evaluation targets—some
works consider random adversaries (Christ et al., 2024a), while others focus only on the finetuning of
the watermarked model, restricted to broad-domain data (Gu et al., 2024).

This work In this work, we aim to provide the first systematic study of the problem of open-
source LLM watermarking, laying the foundation for future research. Figure 1 illustrates the OSM
watermarking setting and our contributions. First, we revisit the requirements for generation-time
LLM watermarks and discuss how they apply to the OSM case. Aiming to concretize the specific
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Figure 1: Definition and evaluation of OSM watermark durability. 1⃝: Given a base unwatermarked
model, a watermark is embedded into its weights. 2⃝: The model is uploaded to a model-sharing
platform like Hugging Face. 3⃝: The model is tested against the established requirements for
generation-time watermarks. 4⃝: Yet, third-party users modify the weights of the model through
quantization, pruning, merging, and finetuning, and may distribute the modified model. We ask: are
such modified models still watermarked? To evaluate this, we introduce a new requirement: durability,
and propose a systematic evaluation procedure based on the most common model modifications.

challenges of the OSM setting, we define a new requirement: durability against common model
modifications. While this was not a concern for closed models, considering such non-adversarial
changes is crucial for OSM, as these models are typically finetuned, quantized or modified in other
ways (§3). As the key goal of watermarking is to protect every model output, a watermark that is not
durable against such changes fails to fulfill its purpose in most realistic scenarios.

We complement this definition by proposing an evaluation procedure for OSM watermark durability
based on a collection of the most common model modifications. In our evaluation of all current OSM
watermarks (and a new variant that we propose in §5), we find that while most methods endure some
modifications, no method is truly durable—establishing durability is a challenging but worthwhile
requirement for OSM watermarks. To motivate future work in this direction, we propose a proof-of-
concept experiment on a GPT-2 architecture to explore ways to improve watermark durability. Our
work is a first step toward more systematic study of OSM watermarks.

Key contributions Our main contributions are:

• We reinterpret LLM watermark requirements in the context of open-source models, and
introduce the critical requirement of watermark durability (§2 and §3).

• We survey current OSM watermarks, propose a new variant, and systematically evaluate all
methods for durability, concluding that no watermark is truly durable (§4 and §5).

• We present a proof-of-concept experiment that explores ways to improve watermark durabil-
ity and identify challenges that remain, motivating future work (§6).

2 REQUIREMENTS FOR WATERMARKING OF OPEN-SOURCE MODELS

We first recall generation-time watermarks and their requirements (§2.1) and detail the challenges
faced by OSM watermarks, along with the new requirements induced by those challenges (§2.2).

Notation We define an LLM as an autoregressive model over a vocabulary Σ, parameterized by
its weights θ ∈ Θ where usually Θ ⊂ Rd. Given a text x ∈ Σ∗, with Σ∗ the Kleene closure of Σ,
the next token distribution according to the LLM is given by pθ(.|x<t). We also refer to y(x, θ) as a
sampled completion from the model θ for the prompt x. Lastly, we note pθ(x) :=

∏|x|
t=1 pθ(xt|x<t).
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2.1 ESTABLISHED REQUIREMENTS FOR GENERATION-TIME WATERMARKS

Next, we introduce generation-time watermarking methods and recall the requirements that have
been established in prior work.

Generation-time watermarks A generation-time watermark w is defined by a triple (fw, ξw,Dw).
ξw ∈ N is a private key (used to seed a pseudo-random function). fw is a mapping from ∆(Σ)×Σ∗×N
to ∆(Σ) that takes a next-token probability distribution, a sequence of tokens, and the private key,
and returns a watermarked next-token probability distribution. Lastly, Dw : Σ∗ × N → {0, 1} is a
watermark detector that, given a text x and the private key ξw, returns 1 if x is watermarked and 0
otherwise. Hence, given a model θ and a text x, to generate watermarked text, at each step t of the
generation process, instead of sampling the next token from pθ(.|x<t) we sample the next token from
fw(pθ(.|x<t), x<t, ξw). We may omit the dependency on x<t in fw by writing fw(pθ(.|x<t), ξw).

Requirements On top of watermark strength, i.e., the ability of the watermarking algorithm to
produce text in which the watermark is detectable, four key requirements of watermarks have been
identified in previous works (Kuditipudi et al., 2024; Hu et al., 2024; Wu et al., 2024).

1. Quality: A watermark should not significantly degrade the quality of the model outputs. A
proxy for quality in the literature is distortion-freeness (Kuditipudi et al., 2024; Hu et al.,
2024; Christ et al., 2024b; Dathathri et al., 2024a). In expectation over the private key ξ, the
next-token distribution (or, in the stronger case, the next-sequence-of-tokens distribution)
should be the same between the original model and the watermarked model.

2. Robustness (Kirchenbauer et al., 2024): Given a watermarked text x, robustness measures
how edits to the text (e.g., token or word insertion, deletion, substitution, and paraphrasing)
affect the accuracy of the watermark detector.

3. Undetectability (Christ et al., 2024b; Liu et al., 2025; Gloaguen et al., 2025): Measures the
ability of third-party actors to detect the presence of the watermark without the private key.

4. Security: This encompasses the vulnerability of the watermarking algorithm to spoofing and
stealing attacks (Jovanović et al., 2024; Zhou et al., 2024; Pang et al., 2024), where a third
party tries to impersonate the watermark without having the private key ξw.

2.2 HOW DOES THE OPEN-SOURCE SETTING DIFFER?

With an open-source model θ, the end user has direct access to pθ(.|x<t). Hence, a malicious user can
choose to sample the next token directly according to pθ(.|x<t) rather than fw(pθ(.|x<t), ξ), thereby
producing non-watermarked text. Thus, for an open-source model, the watermark must be directly
embedded into the model’s weights (i.e., pθ(.|x<t)). This conceptual difference from generation-time
watermarks requires an updated and newly interpreted set of requirements.

OSM watermarks We define a watermark for open-source models w as a triple (gw, ξw,Dw),
where ξw ∈ N is a private key, gw : Θ×N → Θ is a mapping from the initial model to its watermarked
version, and Dw is the watermark detector. This means that the watermark is now embedded into the
weights of the model and sampling text according to pθ(.|x<t) generates watermarked text.

Requirements for OSM watermarks Based on the requirements for generation-time watermarks,
previous works have already identified Quality and Robustness as requirements that directly extend
to OSM watermarks. Undetectability has not been addressed in prior works but similarly remains an
important concern. In particular, distillation-based OSM watermarks (see §4) inherit the detectability
issues of the generation-time watermark they are distilling (Gloaguen et al., 2025; Liu et al., 2025).
The other current OSM watermarks that we introduce in §4 either have similar issues or, while no
detection methods on them have been demonstrated, also do not offer guarantees of undetectability.

In contrast to generation-time watermarks, Security, in particular spoofing, is not considered a
fundamental issue for OSM watermarks. For standard LLM watermarks, spoofing undermines
the model provider’s credibility, allowing attackers to produce malicious texts falsely attributed
to them. As the user has direct control over the OSM watermarked model, more powerful and
easier jailbreaking attacks (Andriushchenko et al., 2024) directly enable the generation of harmful
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watermarked text from such models. Independently, spoofing threatens the integrity of multi-bit
watermarks (Wang et al., 2024a; Yoo et al., 2024; Wang et al., 2023) by enabling impersonation—this
is not applicable to OSMs, where generally only a single fixed model is released.

OSM watermark durability The watermarked model being open-source introduces an additional
key requirement: durability against model modifications (see §3). Durability measures how edits to
the model parameters affect watermark detection. As discussed in §1, no generation-time watermark
is durable in this way, as it can be easily removed by changing the sampling algorithm. In prior
works, durability has either been defined in unrealistic scenarios (Christ et al., 2024a), tested against
incomplete adversaries (Gu et al., 2024), or not considered at all. Yet, we argue that a thorough
consideration of durability is crucial for OSM watermarks, as one primary use case for open-source
models is for users to share and deploy edited versions, as evidenced by almost 200 thousand
models hosted on Hugging Face, with over 200M downloads. Hence, having a well-defined and
systematically evaluated notion of durability is crucial to guide OSM watermark research.

3 DURABILITY OF OPEN-SOURCE LLM WATERMARKS

Next, we proceed to define the durability requirement more concretely. In §4 we will introduce current
OSM watermarking methods, and use our durability evaluation setup to systematically evaluate them
in §5. To concretize the durability requirement, we have surveyed both the literature and trending
Hugging Face models. We identified four main categories of modifications: quantization, pruning,
merging, and finetuning, among which we select the most prominent methods and parameter settings.

Quantization Model quantization techniques have emerged as a key method to enable the deploy-
ment of increasingly large LLMs on memory-constraint commodity hardware. The fundamental idea
underlying quantization is to represent (quantize) model weights (and activations) in lower-precision
data types. We can split popular methods into two categories: zero-shot and optimization-based.
Zero-shot methods fix the quantization mapping (buckets) independently of the model on which they
are applied. This makes them computationally inexpensive and a popular choice in consumer libraries
(e.g., LLM.INT8() (Dettmers et al., 2022), and NF4 (Dettmers et al., 2024) in Hugging Face).
Meanwhile, optimization-based methods aim to minimize a reconstruction error assuming a specific
model. This includes methods like HQQ (Badri & Shaji, 2023), which optimizes reconstruction error
only over model weights, as well as a range of methods, such as GPTQ (Frantar et al., 2023) and
AWQ (Lin et al., 2024), that optimize activation reconstructions over an additional calibration dataset.
For evaluating durability, we consider both 8 bits and 4 bits quantized models with different methods.

Pruning While quantization reduces precision across weights, pruning aims to reduce memory
requirements by directly removing specific weights completely (zeroing out). Unstructured pruning
techniques such as WANDA (Sun et al., 2023), SPARSEGPT (Frantar & Alistarh, 2023), and GBLM
(Das et al., 2023) independently remove weights while relying on minimizing a reconstruction error
between the pruned weights and the dense weights on a calibration dataset. On the contrary, structured
pruning methods such as SHEARED LLAMA (Xia et al., 2023) and LLM-PRUNER (Ma et al., 2023)
aim to remove entire sets of weights (e.g., rows, columns, or layers) jointly (likewise minimizing a
reconstruction error). The advantage of structured pruning is that the resulting model inhibits dense
substructures in its weights, allowing for hardware-optimized inference algorithms. At the same time,
they are usually not zero-shot and require additional finetuning to restore model performance after
pruning. Given such additional modifications, we will only focus on unstructured pruning methods.

Model merging Model merging techniques aim to construct a new model out of a set of base
models by combining their individual weights. Importantly, previous works (Matena & Raffel, 2022;
Jin et al., 2022) have shown that model merging allows for cheaply combining multiple expert models
into a single model that maintains task-specific performance. Most merging techniques (Matena &
Raffel, 2022; Jin et al., 2022; Yadav et al., 2023; Yu et al.) thereby rely on the concept of task vectors
and task arithmetic: expert knowledge in LLMs lies in orthogonal directions in weight space and can
be directly combined to obtain a vector that joins their respective strengths.

We focus on merging via Spherical Linear Interpolation (SLERP) between the watermarked and
original model (Goddard et al., 2025). Given the original model θ0, the watermarked model θwm, the
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angle Ω between θ0 and θwm (we set Ω := π
2 if θ0 or θwm is null), and the interpolation parameter

t ∈ [0, 1], we consider

SLERP(θwm, θ0, t) =
sin[(1− t)Ω]

sinΩ
θwm +

sin[tΩ]

sinΩ
θ0. (1)

Evaluating durability on the SLERP merge with the original model provides both a reproducible
setting for comparing different OSM watermarks and a more adversarial scenario than practical
applications. Indeed, merges are performed on models from the same family, and hence, in the case
of a watermarked model, all merged models are normally derived from the watermarked model.

Finetuning Model finetuning is widely used to improve pretrained models on a specific domain,
usually via additional training on a domain-specific dataset. Besides full model finetuning, which
updates all model weights via gradient descent, Low-Rank Adaptation (LORA) (Hu et al., 2021)
has emerged as an incredibly popular finetuning method that performs parameter-efficient low-
dimensional weight updates. Besides introducing domain-specific knowledge, one of the common
finetuning use cases is instruction finetuning (Zhang et al., 2024), where a base model is trained to
follow the instruction format of a given Q&A dataset, enabling its usage as a chat model.

Apart from such supervised finetuning (SFT) methods, Reinforcement Learning (RL)-based finetuning
(Ouyang et al., 2022; Wang et al., 2024b) is commonly applied to align models with human preferences
or enable more complex reasoning behavior. Yet, due to the additional complexity of RL-based
finetuning, it is, for open-source models, so far significantly less common than SFT. Hence, to evaluate
watermark durability against finetuning, we focus only on SFT as well as instruction finetuning, both
on the full weights of the model and with LORA.

4 CURRENT STATE OF OPEN-SOURCE LLM WATERMARKING

Next, we introduce the current state of watermarking schemes for open-source models. We identify
two main categories: schemes that embed the watermark into the model using gradient descent (Gu
et al., 2024; Xu et al., 2024), and those that directly edit the weights (Block et al., 2025; Christ
et al., 2024a). The latter are less computationally expensive but either require architectural changes
to the model (Christ et al., 2024a) or more compute-intensive detection (Block et al., 2025). For
gradient-based methods, there remain unexplored questions about how such methods generalize to
different tasks (Chen et al., 2024) or the viability of statistical guarantees (Xu et al., 2024). As many
OSM watermarks are based on generation-time watermarks, we provide a separate introduction in
App. A. We evaluate durability against common modifications of the methods presented here in §5.

Distillation-based watermark In Gu et al. (2024), the authors show that generation-time water-
marks (Kirchenbauer et al., 2023; Aaronson, 2023; Kuditipudi et al., 2024) can be imprinted into
the model weights by distilling the watermark from a teacher model θ0. Then, the same watermark
detector can be used to detect the watermark in the student model θ. In the first variant, the teacher
model is used in a black-box way to generate watermarked data Dwm, which the student finetunes on
using the cross-entropy loss:

Lsampling(θ) = Ex∼Dwm

 |x|∑
t=1

− log pθ(xt|x<t)

 . (2)

In the white-box variant, the student model is finetuned to mimic the teacher model’s next-token
distribution, using a loss based on KL-divergence:

Llogit(θ) = Ex∼D

 |x|∑
t=1

KL(fw(pθ0(.|x<t), ξw), pθ(.|x<t))

 . (3)

For evaluating durability, we distill two different generation-time watermarks, KGW and KTH (see
App. A). We label the corresponding distilled OSM watermarks KGW-D and KTH-D, respectively.
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RL-based watermark In Xu et al. (2024), the authors propose integrating the watermark into the
RLHF pipeline (Ouyang et al., 2022) by jointly training the watermark and the watermark detector
using reinforcement learning. More precisely, given a dataset D = {(xi, yi)} of prompts and non-
watermarked completions, a watermark detector D parameterized by θd, and two models θ0, θ ∈ Θ,
we optimize the following objective using PPO (Schulman et al., 2017):

min
θd,θ

E(x,y)∼D[D(x, y, θd)−D(x, y(x, θ), θd)] + λReg(θ, θ0). (4)

Weight-editing watermarks Both Christ et al. (2024a) (UNREMOVABLE) and Block et al. (2025)
(GAUSSMARK) propose directly editing the weights of the model without needing gradient descent.

UNREMOVABLE introduces a Gaussian noise ε = N (0, σI|Σ|) bias layer in the last projection matrix.
The detector, given a text x ∈ Σ∗, computes the following Z-score and performs a one-sided Z-test:

Z(x, ε) =

∑|x|
t=1 ε[xt]

σ|x|
. (5)

As no prominent open-source model architecture has a bias layer in the last projection matrix,
UNREMOVABLE requires a modification of the model architecture allowing for simple removal by
disabling the respective layer. Hence, for current architectures, this watermark is not durable—we
still include it in our evaluation for completeness.

GAUSSMARK generalizes UNREMOVABLE to target any subset θr ⊂ θ of existing model weights
(with dimension dr ∈ N). For this we compute ε = N (0, σIdr

) and consider the model with θr + ε
and all other weights θ\θr untouched. For detection, we use the following statistic:

Z(x, ε) =
ε · ∇θr log(pθ(x))

σ∥∇θr log(pθ(x))∥2
, (6)

and also perform a one-sided Z-test. Unlike UNREMOVABLE, GAUSSMARK can be applied to any
subset of weights from the model and, crucially, does not necessarily require editing the architecture
of the model. However, it requires a forward and (partial) backward pass for watermark detection.

5 EVALUATION

In this section, we present the results of our experimental evaluation of the durability of OSM
watermarks (§4) against common model modifications (§3), with our results highlighting that durable
OSM watermarking is still an open challenge. We defer omitted experimental details to App. B and
present additional in-depth results for each model modification in App. C.

Methods We evaluate KGW-D with δ = 2, γ = 0.25, and k = 1, and KTH-D with key size
256 and no key shift. We do not evaluate distilled AAR (Aaronson, 2023) as it highly degrades text
quality (Gu et al., 2024). For UNREMOVABLE, we set σ = 0.6, and do not evaluate it against pruning,
as current pruning methods assume no architectural changes. For GAUSSMARK we set σ = 0.018
and apply it to the up-projection matrix (up_proj) of the MLP layer in the 31st attention block. We
omit the RL-based watermark, as we were unable to train it to a sufficient text quality.

Variant: targeted distillation In addition to methods from prior work, we evaluate an additional
variant of KGW-D that leverages contrastive task vectors (CTV) (Ilharco et al., 2023; Peiran Dong,
2025) in an aim to improve durability. Namely, we first apply KGW-D to θ0 to obtain θ1. Then,
we finetune θ1 on a broad-domain dataset (OPENWEBTEXT, see App. B) to obtain θ2 where the
watermark has been removed. Let τ denote the following boolean mask of the model weights:

τ = |θ1 − θ0| > |θ2 − θ0|. (7)

Intuitively, weights where τ is false were leveraged to remove the watermark—we aim to avoid
relying on such weights in our final model by (again) applying KGW-D to θ0 only where τ is true.
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Table 1: Durability evaluation: TPR at 5% FPR, and median PPL of different watermarked versions
of LLAMA2-7B under model modifications. (L) denotes LoRA. The missing values indicate cases
where a modification was not applicable due to the watermark’s architectural changes.

KGW-D KTH-D
UNRE-

MOVABLE
GAUSS
MARK

KGW-D
+CTV

Model Modification
TPR
@5 PPL

TPR
@5 PPL

TPR
@5 PPL

TPR
@5 PPL

TPR
@5 PPL

Unaltered 0.99 6.6 0.81 9.7 0.98 7.5 0.99 7.5 0.99 9.1

Quantization

8 bits
GPTQ 0.99 6.6 0.85 7.7 0.99 7.7 0.99 7.2 0.96 9.2

INT8 0.99 6.5 0.76 7.1 0.99 8.0 0.96 7.9 1.00 8.8

4 bits
HQQ 0.99 6.8 0.78 7.0 0.98 8.3 0.95 8.4 0.99 9.9

GPTQ 0.99 7.0 0.78 8.0 0.99 8.2 0.96 8.4 1.00 10.5

NF4 0.98 6.6 0.77 7.4 0.99 8.6 0.97 8.0 0.99 9.7

Pruning

WANDA
ρ = 0.2 0.99 10.0 0.88 11.1 N/A N/A 0.98 8.0 1.00 9.5

ρ = 0.5 1.00 8.4 0.79 7.8 N/A N/A 0.97 10.5 0.99 9.5

GBLM
ρ = 0.2 0.99 9.3 0.85 9.9 N/A N/A 0.98 7.6 1.00 9.1

ρ = 0.5 0.98 8.0 0.76 8.3 N/A N/A 0.91 10.6 0.99 9.0

SPARSEGPT
ρ = 0.2 1.00 10.1 0.86 13.2 N/A N/A 0.98 8.6 1.00 10.3

ρ = 0.5 1.00 8.8 0.89 10.0 N/A N/A 0.94 10.8 0.99 12.9

Merging SLERP

t = 0.1 0.98 8.8 0.52 8.0 0.98 7.6 0.97 11.5 0.98 12.8

t = 0.3 0.82 7.6 0.18 7.3 0.98 7.4 0.82 11.1 0.83 10.9

t = 0.5 0.50 7.7 0.15 6.9 0.93 7.5 0.68 12.0 0.59 11.0

t = 0.7 0.17 7.1 0.11 7.0 0.83 6.7 0.33 10.7 0.34 9.7

t = 0.9 0.04 7.1 0.09 7.4 0.35 6.8 0.10 10.0 0.09 10.1

Finetuning

OPEN
WEBTEXT

500 (L) 0.76 6.0 0.14 5.7 0.94 7.3 0.86 6.9 0.72 7.7

2500 (L) 0.52 5.5 0.13 5.8 0.62 7.4 0.67 7.2 0.56 7.0

500 0.35 5.7 0.09 5.3 0.24 7.1 0.48 7.7 0.34 7.3

2500 0.22 5.5 0.10 5.7 0.23 7.0 0.29 7.1 0.22 7.4

OPEN
MATHINSTRUCT

500 (L) 0.99 6.4 0.58 5.6 0.98 6.9 0.97 7.2 0.99 8.1

2500 (L) 0.99 6.5 0.47 5.5 0.95 7.0 0.96 7.2 0.98 7.9

500 0.75 4.9 0.18 5.0 0.67 6.4 0.69 6.4 0.87 7.2

2500 0.55 4.6 0.12 4.5 0.51 5.9 0.66 5.8 0.69 5.8

Model modifications For each modification from §3, we evaluate a range of representative settings.
For quantization, we use 4-bit and 8-bit variants, using HGG, LLM.INT8(), GPTQ, and AWQ
methods—going below 4 bits significantly degraded text quality in our experiments. We evaluate
pruning with sparsity ratios ρ ∈ {0.2, 0.5} using unstructured pruning methods WANDA, GBLM, and
SPARSEGPT. For merging, we merge the watermarked model with the base model using SLERP with
interpolation ratios t ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Finally, we consider full finetuning and parameter-
efficient LORA, both on broad-domain OPENWEBTEXT (Liu et al., 2019) (Reddit, completions) and
task-specific OPENMATHINSTRUCT (Toshniwal et al., 2024) (math, instruction tuning).

We use the LLAMA2-7B model in all experiments, watermark it, apply the model modification, and
generate 100 completions of length 200 by prompting with the first 50 tokens of each entry in the
RealNewsLike split of C4 (Raffel et al., 2020), as in prior work (Kirchenbauer et al., 2023). For each
completion, we evaluate the watermark strength (TPR at 5% FPR, see App. B) and median quality
(PPL using LLAMA3-8B) to ensure that our modifications sufficiently retain text quality.

Results: OSM watermarks lack durability In Table 1, we present our main results. Colors
correspond to different TPR ranges (green: above 0.9, yellow: between 0.8 and 0.9, red: below 0.8).

First, we observe that nearly all tested schemes are durable to quantization, irrespective of the
quantization method, and even at 4 bits. Similar results hold for pruning, where all schemes are highly
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durable for ρ = 0.2 and remain significantly durable up to a sparsity ratio of 0.5. This intuitively
follows from the fact that both quantization and pruning directly aim to minimize the distortion
between quantized and original model, thereby also preserving the embedded watermark.

For merging with the unwatermarked model using SLERP, we can observe that weight-editing
watermarks are, on average, more durable than distillation-based ones. For UNREMOVABLE, these
good results are expected, as merging the bias layer with the null vector (i.e., the bias layer of the
unwatermarked model) is equivalent to applying the same noise ε but with a scaled standard deviation

εSLERP(t) = sin[(1− t)
π

2
]ε. (8)

Still, for t ≥ 0.7 all methods struggle to retain the watermark. Interestingly, we see that KGW-
D+CTV is slightly more durable than KGW-D, suggesting that the contrastive task vectors can indeed
improve durability, presumably as they localize the watermark to fewer parameters—however, this
modification is ultimately ineffective, as it does not improve strength across other model modifications.

Most importantly, we find that for full finetuning on OPENWEBTEXT, none of the tested water-
marking schemes are durable: after only 500 steps of gradient descent, the TPR drops significantly
to a point where the watermark seizes to be useful. Similar results hold for LoRA finetuning on
OPENWEBTEXT, where only UNREMOVABLE remains high TPR after 500 steps before dropping
significantly after 2500 steps of finetuning. As in the other cases, this can be explained by the archi-
tectural modifications of UNREMOVABLE: LoRA finetuning does not directly modify the (usually
not present) last layer bias and, therefore, cannot directly modify the watermarked part of the model.

We extend these results by including finetuning experiments with the domain-specific dataset OPEN-
MATHINSTRUCT, modeling a realistic use-case where a user would finetune an OSM on an expert
task. Across all schemes, we find higher durability compared to OPENWEBTEXT, especially for
LORA. Note that we still evaluate the watermark strength on the general domain C4 test set—as we
show in App. C, there is a significant drop in watermark strength when evaluated on the math domain.
This points to an interesting phenomenon of domain-specificity of OSM watermarks: watermark
strength more quickly degrades on domains specifically targeted by finetuning.

Overall, we conclude that while prior work proposed a range of OSM watermarking methods with
varying tradeoffs, no method is currently sufficiently durable. Given the real-world prominence of
such model modifications, ensuring durability against them remains an open and critical challenge for
future research—here our proposed evaluation setup provides an easy way to compare future work.

6 IMPROVING OSM WATERMARK DURABILITY

In this section, we extend current distillation-based OSM methods introduced in §4 by significantly
increasing the distillation dataset size and further explore a variant that starts from a randomly
initialized model (distillation pretraining), as opposed to the standard application on top of an already
pretrained model (Gu et al., 2024). As a proof of concept, we show that on a GPT-2 architecture,
distilling on a large training set significantly improves watermark durability. Moreover, we show
that distillation pretraining and standard distillation finetuning exhibit complementary behaviors:
distillation pretraining is more durable against specific task finetuning, whereas standard distillation
is more durable against broad-domain finetuning. We further expand on our results in App. D.

Experimental details We perform the distillation of the KGW watermark with δ = 2, γ = 0.25,
and k = 1 on a GPT-2-based architecture. We use the following setup: KGW-D (PRETRAINED)
trains a model with random initialization θ ∈ Θ using Gu et al. (2024) (see Eq. (3)) with ≈9B
tokens. For KGW-D (LONG), we finetune an already pretrained model (θ0) with the same distillation
approach, also with ≈9B tokens. As a reference, we also distill the watermark using the same
hyperparameters as in Gu et al. (2024), i.e., with only ≈ 40 million tokens on top of θ0 (KGW-D
(STANDARD)). To evaluate watermark strength, we use the same setup as in §5 but with 1000
completions instead of 100. To evaluate durability to model modifications, as in §5, we finetune on
both broad-domain OPENWEBTEXT and task-specific OPENMATHINSTRUCT datasets.

Distillation on more tokens is more durable In Table 2, we see that both KGW-D (PRETRAINED)
and KGW-D (LONG) are significantly more durable against finetuning compared to KGW-D
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Table 2: Durability evaluation: TPR at 1% and 5% FPR, and median PPL of different watermarked
versions of GPT-2 under finetuning on either OPENWEBTEXT or OPENMATHINSTRUCT.

KGW-D
(PRETRAINED)

KGW-D
(LONG)

KGW-D
(STANDARD)

Model Modification
TPR
@1

TPR
@5 PPL

TPR
@1

TPR
@5 PPL

TPR
@1

TPR
@5 PPL

Unaltered 1.00 1.00 34.4 1.00 1.00 31.8 0.99 1.00 30.7

Finetuning
OPENWEBTEXT

500 0.89 0.97 25.3 0.90 0.97 23.6 0.74 0.87 24.1

2500 0.57 0.79 25.1 0.63 0.84 23.5 0.47 0.73 23.6

OPENMATHINSTRUCT
500 0.98 0.99 24.6 0.95 0.98 21.1 0.80 0.89 21.4

2500 0.91 0.96 22.6 0.81 0.91 19.4 0.48 0.66 19.1
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Figure 2: Evaluation of the TPR difference between KGW-D (PRETRAINED) and KGW-D (LONG)
when finetuned (as a model modification) on either OPENWEBTEXT or OPENMATHINSTRUCT.

(STANDARD). This confirms our prior intuition that OSM watermark durability scales with the
extent of the model’s exposure to watermarked text during training. However, while the results are
promising when finetuning on OPENMATHINSTRUCT, finetuning on a broad-domain dataset such as
OPENWEBTEXT still significantly deteriorates the watermark.

Distillation at pretraining is task-aware In Figure 2 we present more granular results, aiming
to decouple the effects of training a randomly initialized model and simply increasing the number
of training tokens. Namely, we show the difference of TPR between KGW-D (PRETRAINED) and
KGW-D (LONG) across different rejection rates and (model modification) finetuning steps. We
observe that the pretraining distillation approach is slightly worse at preserving the watermark when
later finetuned on a broad-domain dataset (at most 10% TPR difference) but better at preserving the
watermark when finetuned on a task-specific dataset (up to 20% TPR increase).

Perhaps more interestingly, as we evaluate the TPR on C4 prompt completions, i.e., a broad-
domain/general task, we conclude that the distillation pretraining watermarked model may exhibit
a form of task-awareness: If the model is finetuned on unwatermarked data from a specific task, it
will not un-learn the watermark on other tasks. We hypothesize that this robustness is due to the
model only ever being trained on watermarked text, i.e., never seeing unwatermarked text before the
model modification stage. For the standard distillation watermark, even when the number of training
tokens is increased to match the pretraining case, we do not observe this behavior, even though it is,
interestingly, slightly more durable against finetuning on a general dataset.

Limitations Our results suggest both that the way the model distills the watermark matters, as
evidenced by the difference between distillation during pretraining and simple finetuning, and that
increasing the training set size can indeed improve durability. However, the practicality of these
effects is limited, as (1) even with much larger dataset sizes, the increase in durability is often
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insufficient for the watermark to remain effective against prolonged downstream finetuning, and (2)
scaling this approach to real-world models is expensive. This also makes it unclear how much our
results on the comparatively small GPT-2 architecture generalize to larger and more capable models.

7 CONCLUSION

In this work, we studied the problem of watermarking open-source LLMs. Noting the fragmentation
in prior work on this topic, we laid the foundation for systematic future study of OSM watermarking.
We revisited the requirements for generation-time LLM watermarking, discussed how they apply in
the open-source setting, introduced a novel requirement, durability, and applied a new systematic
evaluation procedure to existing OSM watermarks. Finding that none of the current watermarks
are durable, we proposed scaling watermark distillation methods, highlighting their benefits and
limitations. We hope our work can kick-start progress on this crucial yet challenging problem.
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Thibaud Gloaguen, Nikola Jovanović, Robin Staab, and Martin Vechev. Black-box detection of
language model watermarks. In ICLR, 2025.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models, 2025. URL https://arxiv.org/abs/2403.13257.

Google DeepMind. Identifying ai-generated content with synthid, 2025. https://deepmind.google/
technologies/synthid/, last accessed: Feb 8 2025.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. In ICLR, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, October 2021.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased
watermark for large language models. In ICLR, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:
//arxiv.org/abs/2212.04089.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2403.13257
https://deepmind.google/technologies/synthid/
https://deepmind.google/technologies/synthid/
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089


Preprint

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.
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A DESCRIPTION OF GENERATION-TIME WATERMARKS

In this section, we introduce a high-level description of two generation-time watermarks, KGW
(Kirchenbauer et al., 2023) and KTH (Kuditipudi et al., 2024).

KGW watermark KGW watermark (Kirchenbauer et al., 2023) works by partitioning, at each step
of the generation, the vocabulary into a Red and Green subset using the private key ξ and summing
the hashes of the k previous tokens. The Green subset has a size of γ|Σ|, with γ ∈ [0, 1]. Logits of
the tokens in the Green subset are boosted by δ > 0, making them more likely to be sampled. The
watermark detector works by performing a binomial test on the number of Green tokens in the text.

KTH watermark KTH watermark (Kuditipudi et al., 2024) is parametrized by a key length
nkey ∈ N and a key ξ ∈ [0, 1]|Σ|×nkey , where each entry ξk ∈ [0, 1]|Σ| is uniformly distributed in
[0, 1]. At each step t of the generation, given a probability distribution pt over Σ, the next token is
chosen as the argmax of (ξ(t mod nkey))

pt . Additionally, to allow multiple generations given a fixed
prompt, the key is randomly shifted by a constant before generating a new sequence. Finally, given a
text x, detection works by performing a permutation test using the minimum Levenshtein distance of
the alignment cost d(x, ξ) =

∑|x|
t=1 log(1− ξ(t mod nkey,xt)).

B EXPERIMENTAL DETAILS

In this section, we provide an in-depth list of the parameters used for the model modifications (§3) and
the watermarking schemes (§4) that we use in our evaluation in §5. For all watermarking schemes,
we use the same LLAMA2-7B as our base unwatermarked model.

Watermarking schemes For distillation-based generation-time watermarks, we use the distillation
loss from Eq. (3) with OPENWEBTEXT as D. We distilled the watermark using the same hyperpa-
rameters as in Gu et al. (2024): a batch size of 64, with 512 tokens per input, a learning rate of 1e-5,
the AdamW optimizer (Kingma & Ba, 2017) with (β1, β2) = (0.9, 0.999), and no weight decay. For
KGW-D, we use δ = 2, γ = 0.25, and k = 1. For KTH-D, we use nkey = 256 with no key shift.

For KGW-D+CTV, we first distill KGW with the parameters described above on the full model.
Then, we finetune the watermarked model on OPENWEBTEXT for 2500 steps with cross-entropy loss,
batch size of 64, 512 tokens per input, a learning rate of 1e-5, the Adafactor optimizer with a cosine
learning rate decay, and a linear warmup for the first 500 steps. We then compute the contrastive task
vector (Eq. (7)) and learn KGW on the selected weights.

For the UNREMOVABLE watermark, we set the standard deviation to σ = 0.6 to ensure sufficient
power in the unaltered watermarked model while not degrading the model’s quality too much. For
GAUSSMARK, as suggested in Block et al. (2025), we perform a grid search to find the best layer
and standard deviation to balance watermark power and quality degradation. We find the optimal
layer to be the 31st MLP up_proj layer with a standard deviation of σ = 0.018.

Model modifications For all quantization and pruning methods, we use the default hyperparameters
suggested for each technique. For finetuning on OPENWEBTEXT, we use a batch size of 32, with 512
tokens per input, a learning rate of 1e-5, the Adafactor optimizer with a cosine learning rate decay,
and a linear warmup for the first 500 steps. For finetuning on OPENMATHINSTRUCT, we introduce
two new instruction tokens and use the same settings but with a maximum of 2048 tokens per input
to accommodate the entire math problem and solution. For both finetuning tasks, we use the same
LORA adapter with a low-rank dimension of 16 and an alpha of 32. Moreover, we apply the LORA
adapter only to the following layers: v_proj, k_proj, o_proj, and q_proj.

Metrics As our main metric in §5 we use the true positive rate of the watermark detector, evaluated
at a false positive rate of 5%. While we believe this FPR level is high for fully practical applications, it
is both a common evaluation setting in prior watermarking literature, and more importantly, calibrated
to the current strength of OSM watermarks. Ideally, OSM watermarks would advance to a level
where this metric is not useful anymore as the corresponding TPRs would be close to 1 for many
methods, and evaluations would focus on lower, more practical FPR levels.
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Figure 3: Evolution of different watermark TPRs against multiple quantization methods. Each color
corresponds to a different quantization method. The rejection rate α is in logarithmic scale for clarity.
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Figure 4: Evolution of different watermark TPRs for different SLERP interpolation levels t.

C ADDITIONAL RESULTS ON WATERMARK DURABILITY

In this section, we analyze the ROC curves (Experimental TPR versus FPR) to evaluate in detail
the durability of the watermarks against all common model modifications (App. C.1). We confirm
the observation from §5 that current OSM watermarks lack durability. In App. C.2, we measure the
durability of the watermark on a specific task when finetuning is performed on the same task.

C.1 ROC CURVES OF OSM WATERMARKS AGAINST COMMON MODEL MODIFICATIONS

Here, we extend the results from §5 by presenting ROC curves for all schemes tested under all
common model modifications identified in §3.

Quantization In Figure 3, we see no visible difference between 4 bits and 8 bits quantization
in the empirical TPR of different watermarking schemes. This suggests that quantization is not a
challenge for current OSM watermarks. Intuitively, this is an expected result as most quantization
techniques try to preserve the model performance as much as possible when quantizing the model.
Hence, by minimizing the impact on model performance, quantization also minimizes the impact on
the watermark.

Merging Similarly, in Figure 4, we see the ROC curve for different values of the SLERP interpola-
tion parameter and different watermarking schemes. We see that weight-editing watermarks are more
durable against merging. As explained in §5, this is an expected result.

Pruning In Figure 5, we see the ROC curve for different values of sparsity ρ and different wa-
termarking schemes. For ρ > 0.5, the model quality is too low to be usable; hence, we do not
compute the TPR for higher sparsity ratios. We see that for most schemes tested, the watermark is
durable against pruning, even for high sparsity ratios. As with quantization, this is an expected result.
With unstructured pruning, the objective is to find the sparse weights that minimize the distortion in
the dense model activations. By minimizing such distortion, pruning techniques also preserve the
watermark.

Finetuning In Figure 6, we see the ROC curve for full finetuning on either OPENWEBTEXT
or OPENMATHINSTRUCT. The conclusion is similar as the one from Table 1: the watermark
is not durable against finetuning even for a few steps. This is unsurprising as with finetuning,
we want the model to learn the distribution of the training dataset. Hence, because the training
dataset is not watermarked, its distribution significantly differs from the model’s previously learned
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Figure 5: Evolution of different watermark TPRs averaged over three pruning techniques (WANDA,
GBLM, and SPARSEGPT) at different sparsity ratios ρ. The rejection rate α is in logarithmic scale.
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Figure 6: TPR for differen finetuning lengths on either OPENWEBTEXT (General) and OPENMATH-
INSTRUCT (Math). The black dotted line corresponds to the unaltered watermark model TPR.
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Figure 7: TPR for different lengths of finetuning on OPENMATHINSTRUCT (Math). The watermark
is evaluated on answers from GSM-8K.

distribution. Therefore, finetuning effectively bridges the gap between these two distributions,
removing the watermark. This is why, for most schemes, finetuning on a specific domain (Math) does
not necessarily remove the watermark as much as finetuning on a broad/general domain.

C.2 WATERMARK DURABILITY ON EXPERT TASKS

Here, we evaluate the ability of a watermarked open-source model to retain the watermark signal on
newly learned expert tasks, e.g., math. We use the same watermarks as in §5.

Experimental details We first instruction-finetune a watermarked model on OPENMATHINSTRUCT
to teach the model how to solve math questions. We use the same hyperparameters as in §5. Then,
instead of measuring the watermark durability on broad C4 prompt completions, we consider 200-
token answers to math questions. This is closer to a practical scenario: if a user finetunes a given
model on a specific task, it is expected that the model will be used for that task as well, hence if
the watermark is not durable, most text produced by this model in practice will effectively not be
watermarked.

OSM Watermarks do not transfer to new domains In Figure 7, we see that none of the tested
watermarks are durable when finetuned and evaluated on a specific domain. This contrasts with the
evaluation from Table 1, where we show that finetuning on a specific domain but evaluating the
watermark strength on a general domain does not lower the watermark strength as significantly. This
highlights a crucial limitation of the durability of current watermarks for open-source models, and
suggests that the watermark strength of the task-specific watermarked model should also be evaluated
on similar task-specific datasets, which has been overlooked in previous works (Chen et al., 2024).
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Figure 8: Evaluation of the TPR at 1% and 5% against finetuning for KGW-D with increasing
training dataset size when distilling the watermark on GPT-2.

D INFLUENCE OF THE TRAINING LENGTH ON DISTILLATION-BASED
WATERMARK DURABILITY

In this section, we extend the experiment from §6 and specifically ask whether scaling the number of
tokens when distilling the watermark necessarily improves durability against finetuning.

Experimental details We again perform the distillation of the KGW watermark with δ = 2, γ =
0.25, and k = 1 on a GPT-2 pretrained model. We distill the watermark for a different number
of steps, where each step consists of approximately 60 thousand tokens. We then evaluate the
watermark strength every 20,000 steps (i.e., approximately 1.4B tokens). To evaluate the watermark
strength, we use the same setup as in §5 but with 500 completions instead of 100. To evaluate
durability against finetuning, we finetune on both broad-domain OPENWEBTEXT and task-specific
OPENMATHINSTRUCT.

Durability does not scale with distillation training length In Figure 8, we plot both the TPR at
1% and 5% FPR for the different models tested. We see that the watermarked model that has been
distilled for 20 thousand steps is actually more durable than the one distilled for only 2500 steps
(KGW-D (STANDARD) from Table 2), but also more durable than the ones distilled for longer (with
up to a 10% TPR@1 difference). It also seems that, as the distillation training length increases, its
impact on durability plateaus, as all TPR curves from 80 thousand steps onward are very similar.
These results confirm the limitations highlighted in §6: increasing the training set size, up to a point,
improves durability, yet it is still insufficient for the watermark to remain effective against prolonged
downstream finetuning.
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