
VectorFit : Adaptive Singular & Bias Vector Fine-Tuning
of Pre-trained Foundation Models

Suhas Hegdea, Shilpy Kaura and Aruna Tiwaria

aIndian Institute of Technology Indore

Abstract. Popular PEFT methods reduce trainable parameter count
for fine-tuning by parameterizing new low-rank or sparse trainable
weights in parallel to the frozen pre-trained weights W . However,
these weights are trained from scratch, and there exists a perfor-
mance gap between these methods and full fine-tuning, especially
in low-budget settings. We introduce VectorFit, a new way of pa-
rameterization that efficiently utilizes the existing knowledge em-
bedded in W by adaptively training their singular vectors and biases.
We show that utilizing the structural and transformational properties
of W in this way can lead to high-rank incremental weight matri-
ces ∆W , comparable to that of full fine-tuning. VectorFit delivers
superior results with 9× fewer trainable parameters than the lead-
ing PEFT methods. Through comprehensive experiments across 19
datasets covering a wide range of language and vision tasks such
as natural language understanding and generation, question answer-
ing, image classification, and image generation, we demonstrate that
VectorFit surpasses baselines in terms of performance as a function
of parameter-efficiency.

1 Introduction
Pre-trained foundation models (PFMs) have set unprecedented stan-
dards in language, vision, and audio tasks [39, 33, 30], showcas-
ing their strong performance across diverse domains. Refining these
models through fine-tuning is a powerful approach to enhance their
performance across diverse downstream tasks [20, 45]. This process
helps models adhere to given instructions [43], adopt preferred be-
haviors, and discard undesirable ones [31]. However, adapting these
models to downstream tasks through full fine-tuning (Full-FT) is a
significant challenge, primarily due to the immense computational
and memory overhead. For instance, models like DeBERTa-V3 [10]
with 300 million parameters, ViT-22B [3] with 22 billion parame-
ters, and Llama-3 [8] with a staggering 405 billion parameters exem-
plify the scale of modern PFMs. Adapting these models for multiple
downstream tasks is resource-intensive and typically requires main-
taining separate copies of the full model for each task, leading to a
very high memory consumption.

Parameter-Efficient Fine-Tuning (PEFT) mitigates these chal-
lenges by introducing a small set of trainable parameters to produce
specialized models. For example, PFMs like LLMs are fine-tuned for
tasks such as text classification [40], question answering [32], and
text generation [19] using task-specific datasets. PEFT techniques,
such as LoRA [13] and adapter [28], significantly reduce the number
of trainable parameters compared to Full-FT, although this can com-
promise the performance. More advanced methods like AdaLoRA
[49] try to increase expressiveness by adaptively choosing trainable

Figure 1. Accuracy vs Trainable parameter count for SST2 dataset. Vec-
torFit (labeled as VF for brevity) outperforms baselines with 85% less train-
able parameters. The graph highlights that VectorFit is a PEFT method in
extremely low parameter regime of <0.1% trainable parameters.

parameters, bridging the performance gap. However, majority of suc-
cessful PEFT methods work by adding a new set of weight matrices
with the assumption that incremental weight matrices are low-rank.
This may limit their expressiveness and disregards the nuances of
weight matrix transformation during Full-FT. Moreover, even state-
of-the-art PEFT techniques (e.g., LoRA, Adapter, and AdaLoRA)
can still result in a substantial number of trainable parameters, even
in their highest parameter-efficient setup (e.g., LoRA with rank 1).
Although there are a few recent methods that do not rely on low-rank
updates [29, 22], all of them, to the best of our knowledge, work
based on fine-tuning a newly initialized set of weight matrices. This
leads to a high overall parameter count and memory consumption,
twice as that of LoRA in SVFT [22].

This prompts the question: Can we achieve extreme parameter-
efficiency through the efficient use of pre-training knowledge em-
bedded in the weight matrices, without incurring prohibitive param-
eter and memory costs? As an answer, we introduce VectorFit, which
directly leverages the structural and transformational characteristics
of the pre-trained weights instead of introducing new weights for
fine-tuning, differentiating our method from prior work. Given a pre-
trained weight matrix W0, VectorFit applies singular value decompo-
sition (SVD), such that W0 = UΣV T . The method then selectively
adapts the singular vector (Σ) and the bias (b) associated with W0,
focusing on those Σ and b that exhibit suboptimal training compared
to those of other weight matrices. We propose a mechanism called

ar
X

iv
:2

50
3.

19
53

0v
2

 [
cs

.L
G

]
 1

7
Ju

l 2
02

5

https://arxiv.org/abs/2503.19530v2

Adaptive Vector Freezing to achieve this.
Since the singular vectors represent the stretching of the trans-

formation applied by the weight matrices in their high-dimensional
subspace, directly fine-tuning them allows for high expressiveness
(Appendix D.5). This is evident from the fact that VectorFit per-
forms high-rank updates comparable to Full-FT (Figure 10) while us-
ing significantly fewer trainable parameters (≤ 0.1%). Additionally,
training the bias vectors gives translational degree of freedom, fur-
ther enhancing the expressiveness during fine-tuning. VectorFit out-
performs the baselines in terms of performance relative to parameter
efficiency (Figure 1). It also gives a practical memory consumption
approximately equivalent to that of LoRA with rank 1 for smaller
base models (Figure 5). The memory consumption of VectorFit lies
in between LoRA and SVFT for larger base models (Figure 6).

2 Related Work

Researchers have explored three primary approaches to reduce the
number of parameters required for fine-tuning while preserving or
enhancing the performance of PFMs. These approaches can be
broadly categorized into Adapter-based methods, LoRA-based meth-
ods, and other PEFT methods.

Adapter-Based methods. This research direction emphasizes in-
corporating small neural networks into PFMs and fine-tuning only
these modules for specific tasks, keeping the base model frozen and
shared across tasks. This approach introduces a limited number of
task-specific parameters, significantly improving the scalability and
practicality of large models. For instance, adapter tuning [12, 28, 9]
integrates small neural networks, known as adapters, between the
layers of the base model. Other methods, such as prefix tuning [21]
and prompt tuning [17], add trainable prefix tokens to the input or
hidden layers of the model. These techniques claim to have demon-
strated performance comparable to Full-FT while updating less than
1% of the model parameters, significantly reducing memory require-
ments.

LoRA-Based methods. A significant advancement in PEFT is
Low-Rank Adaptation (LoRA) [13], which preserves the pre-trained
model weights and incorporates trainable low-rank matrices within
each transformer layer. For a pre-trained weight matrix W0 ∈
Rdr×dc , LoRA constrains the weight update ∆W to a low-rank de-
composition: y = W0x+∆Wx = W0x+BAx, where B ∈ Rdr×r ,
A ∈ Rr×dc and rank r << min(dr, dc). Only A and B are train-
able parameters.

Several studies have introduced variations of the LoRA algorithm,
focusing on reducing the number of trainable parameters [47, 15, 6],
improving the flexibility of low-rank structures [14, 50, 37], enabling
adaptive parameter allocation [46], and integrating LoRA with tech-
niques like quantization [5, 44] and pruning [48].

A significant enhancement over LoRA is AdaLoRA [49], which
addresses LoRA’s limitation of evenly distributing trainable param-
eters across weight matrices, ignoring their varying importance. In
AdaLoRA, the incremental updates are parameterized as singular
value decomposed matrices PΛQ, where P ∈ Rdr×r and Q ∈
Rr×dc are the left and right singular matrices, Λ ∈ Rr×1 is the sin-
gular vector. The orthogonality of P and Q is maintained using the
regularizer R(P,Q) = ∥P⊤P − I∥2F + ∥QQ⊤ − I∥2F . The rank of
low-rank updates is dynamically adjusted using an importance met-
ric derived from Λ. By pruning less significant singular values while
allowing for recovery, AdaLoRA claims to have improved perfor-
mance with a similar parameter budget as LoRA. Pissa [24] is an-
other method that works similar to LoRA while the initialization of

the low-rank trainable weights is done using the principal singular
values and vectors.

Other PEFT methods. Orthogonal Fine-Tuning (OFT) [29] in-
troduces an orthogonal projection approach using orthogonal regu-
larization. It focuses on optimizing parameters while preserving the
orthogonality of weight updates, ensuring minimal interference with
pre-trained knowledge. However, it still demands a significant num-
ber of trainable parameters because of the high dimensionality of
the matrices. Butterfly Orthogonal Fine-Tuning (BOFT) [23] builds
upon OFT by introducing Butterfly factorization and claims to im-
prove parameter efficiency, and fine-tuning flexibility. Singular Vec-
tors guided Fine-Tuning (SVFT) [22] leverages the singular value
decomposition of pre-trained weight matrices to parameterize weight
updates as y = W0x + ∆Wx = U(Σ + M)V Tx, where M is a
sparse trainable matrix with pre-determined and fixed sparsity pat-
tern. As M is not restricted to be low-rank, SVFT claims to achieve
high-rank gradient updates. Nonetheless, SVFT uses four matrices,
U,Σ, V , and M , for every pre-trained weight matrix. Also, their di-
mensions are comparable to those of the pre-trained weight matrix.
This leads to a high parameter and memory cost.

3 VectorFit

In this section, we describe VectorFit and its components in detail.
VectorFit comprises two key components: (1) Vector Fine-Tuning,
based on SVD. (2) Adaptive Vector Freezing, a mechanism to avoid
co-adaptation and to improve the performance.

3.1 Vector Fine-Tuning

VectorFit initially performs SVD on the pre-trained weight matrix
W0 ∈ Rdr×dc , such that, W0 = UΣV T . W0 can be the weight ma-
trix of any of the modules in self-attention (q, k, v, o) or multilayer
perceptron (f1, f2) of a transformer block. Then we potentially fine-
tune only the singular vector Σ and the pre-trained bias vector b0
corresponding to W0, subject to Adaptive Vector Freezing, as shown
in Figure 2. Formally, this can be denoted as follows:

y =
(
UΣV T

)
x+ b0 (1)

where x ∈ Rdin×dr is the input hidden state. U ∈ Rdr×dr is the
left singular matrix and V ∈ Rdc×dr is the right singular matrix of
W0, consisting of orthonormal column vectors. V T is the transpose
of V. Σ ∈ Rdr×1 and b0 ∈ Rdc are the potentially trainable singular
vector and bias vector of W0, respectively. y ∈ Rdout×dc is the out-
put hidden state. Note that Σ in standard SVD is a diagonal matrix
and we store it as a vector for memory efficiency. The weight updates
of VectorFit are parameterized as:

W = W0 +∆W = U(Σ +∆Σ)V T (2)

b = b0 +∆b (3)

where ∆W , ∆Σ, and ∆b are the incremental matrix/vectors of
W0, Σ, and b0, respectively.

Singular values of a weight matrix quantify the scaling factors
for the transformation along its orthogonal directions, an important
aspect of the weight matrix. Directly fine-tuning them as described
above results in an overall high-rank incremental matrix whose rank
is comparable to that of full fine-tuning of the weight matrix. This is
analyzed in detail in Section 6.2.

Figure 2. Architecture diagram of VectorFit. The pretrained weight matrix is initially decomposed into U , Σ, and V . Subsequently, only Σ and bias b are
trained with Adaptive Vector Freezing mechanism.

To avoid performing the expensive calculation of SVD for every
single pre-trained weight matrix during each training step, we per-
form SVD in the beginning of the fine-tuning and replace the original
weight matrices of the model with their decomposed version. This
takes a few seconds of extra time in the beginning of the fine-tuning,
which is negligible. Although this approach increases the total pa-
rameter count—for instance, VectorFit with DeBERTaV3-base has
18% more parameters than LoRA (r = 1) with DeBERTaV3-base—
its practical training memory consumption remains similar to LoRA
(r = 1). More details on this is given in Appendix A.

3.2 Adaptive Vector Freezing

As we train only a small number of parameters (a few tens of singu-
lar and bias vectors), it is crucial to ensure balanced training across
all trainable vectors. This prevents some vectors from being over-
trained while others remain under-trained, a phenomenon known as
co-adaptation.

To address this, we propose Adaptive Vector Freezing (AVF), a
mechanism that periodically freezes (disables the gradients of) the
top-k trainable vectors that have undergone extensive training. This
allows the remaining under-trained vectors to receive adequate up-
dates. The extent of training of each vector is quantified in the
form of training strength. Consider the set of all trainable vectors,
V = {Σl,m, bl,m : l = layer,m = module(q, k, v, o, f1, f2)}. We
define the training strength Sv(t) of a vector v ∈ V at training step t
as L1 norm between v0 and vt, formulated as follows:

Sv(t) =
1

dim(v)
||v0 − vt||1 (4)

where v0 is the value of v before fine-tuning and vt is the value
of v during the training step t. dim(v) is the dimension of v. To find
the top-k vectors, we perform exponential moving average of Sv(t)
as given in Eq. 5.

S′
v(t) = βS′

v(t− tf) + (1− β)Sv(t) (5)

where β = 0.99, is a constant. We define the training step at which
AVF is applied as the AVF step. Given the frequency of AVF steps
tf , the first AVF step ti, the number of vectors k to freeze per AVF
step, and the total number of AVF steps nf , the top-k vectors with the
highest S′

v(t) values are frozen at each AVF step. Note that the train-
ability of vectors do not change in between AVF steps. However, a

vector frozen during one AVF step may become trainable in a subse-
quent AVF step, ensuring that all vectors are adequately trained over
time. More details on these hyperparameters are given in Appendix
C.

In Section 6.1, we theoretically and experimentally show that this
mechanism leads to similar effect as that of dropout. It is important
to note that using the standard dropout algorithm for singular vec-
tors results in a significant performance drop, even with a very low
dropout probability. This signifies that certain singular values, and
their corresponding left and right singular directions are extremely
important that they cannot be dropped. Therefore, the AVF mecha-
nism is crucial for maintaining effective training.

4 Experiments

Implementation details. All algorithms are implemented using Py-
Torch [27]. Our implementation builds upon the publicly available
Huggingface Transformers codebase [42]. Appendix C contains the
full details of our experimental setup and hyperparameter configura-
tions.

4.1 Tasks and Datasets

We evaluate our method on the following tasks and datasets:

1. Natural Language Understanding (NLU): Experiments are con-
ducted on the GLUE benchmark [40], which includes single-
sentence classification, similarity/paraphrase, and natural lan-
guage inference tasks.

2. Question Answering (QA): Performance is tested on SQuAD v1.1
and SQuAD v2.0 [32], treating QA as a sequence labeling prob-
lem to predict the start and end token probabilities for answer
spans.

3. Natural Language Generation (NLG): Evaluation is performed on
the XSum [26] and CNN/DailyMail [25] datasets for text sum-
marization task. GSM8K [2] and Math [11] datasets are used to
evaluate mathematical problem-solving capabilities.

4. Image Classification: Our method is assessed on image classifi-
cation tasks using CIFAR10 [16], GTSRB [36], MNIST [4], and
RESISC45 [1] datasets.

5. Image Generation: The results on subject-driven image generation
is evaluated using the Dreambooth dataset [34].

Table 1. DeBERTaV3-base fine-tuned using various PEFT methods is evaluated on the GLUE benchmark. For performance metrics, we report matched
accuracy for MNLI, Matthew’s correlation for COLA, Pearson correlation for STS-B, and accuracy for the other tasks, where higher values indicate better
performance across all metrics. # Params is the number of trainable parameters.

Method # Params MNLI SST2 COLA QQP QNLI RTE MRPC STSB

Full FT 184M 89.90/90.12 95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60

HAdapter 1.22M 90.13/90.17 95.53 68.64 91.91/89.27 94.11 84.48 89.95 91.48
PAdapter 1.18M 90.33/90.39 95.61 68.77 92.04/89.40 94.29 85.20 89.46 91.54

LoRA(r=8) 1.33M 90.65/90.69 94.95 69.82 91.99/89.38 93.87 85.20 89.95 91.60
AdaLora 1.27M 90.76/90.79 96.10 71.45 92.23/89.74 94.55 88.09 90.69 91.84

HAdapter 0.61M 90.12/90.23 95.30 67.87 91.65/88.95 93.76 85.56 89.22 91.30
PAdapter 0.60M 90.15/90.28 95.53 69.48 91.62/88.86 93.98 84.12 89.22 91.52
HAdapter 0.31M 90.10/90.02 95.41 67.65 91.54/88.81 93.52 83.39 89.25 91.31
PAdapter 0.30M 89.89/90.06 94.72 69.06 91.40/88.62 93.87 84.48 89.71 91.38

LoRA(r=2) 0.33M 90.30/90.38 94.95 68.71 91.61/88.91 94.03 85.56 89.71 91.68
AdaLora 0.32M 90.66/90.70 95.80 70.04 91.78/89.16 94.49 87.36 90.44 91.63

Pissa 0.33M 89.99/90.13 94.86 68.79 91.57/88.73 93.92 85.09 89.84 91.69
SVFT 0.28M 89.90/89.97 95.99 72.61 91.50/88.98 93.90 88.09 88.99 91.73

VectorFit 0.15M 90.12/89.89 96.10 70.94 91.51/88.70 94.05 84.12 92.16 91.76

4.2 Base Models

We use six distinct base model types that are representative of a wide
range of PFMs for the evaluation of our algorithm:

1. DeBERTaV3-base [10], a transformer encoder-only language
model, applied to NLU and QA tasks.

2. BART-large [18], a transformer encoder-decoder model, used for
NLG tasks.

3. Gemma-7B [38], a transformer decoder-only model, used for
NLG tasks.

4. Llama-3-8B [8], a transformer decoder-only model, used for NLG
tasks.

5. ViT-base [7], a vision transformer model, applied to image classi-
fication tasks, pre-trained on Imagenet-1K.

6. Stable Diffusion v1.4 [33], a latent diffusion model based on UNet
architecture, used for text-to-image generation.

Baselines. We compare our approach against Full-FT, which updates
all parameters across all layers. Additionally, we evaluate it against
state-of-the-art methods from each of the three categories mentioned
in Section 2. These include LoRA [13], AdaLoRA [49], PAdaptor
[28], HAdaptor [12], Pissa [24], and SVFT [22].

5 Results
In the tables, the highest accuracy within each trainable parame-
ter count regime is highlighted in bold, and the overall parameter
efficiency (% accuracy / % trainable parameters) is reported with
underline.

5.1 Natural Language Understanding

Table 1 presents the results on the GLUE benchmark, where Vec-
torFit outperforms Full-FT by an average of 0.6% while requiring
over 1200× fewer trainable parameters. Its performance is compa-
rable to baselines like LoRA (r = 8), which uses 9× more trainable
parameters. VectorFit outperforms SVFT by upto 3.2% with 2× less
parameters. Notably, VectorFit achieves the highest parameter effi-
ciency across all datasets in the GLUE benchmark, establishing it as
the most optimal PEFT method for natural language understanding
tasks.

5.2 Question Answering

We evaluate the performance of our method on the SQuAD v1.1
and the more challenging SQuAD v2.0 datasets, using exact match
(EM) and F1 scores as metrics. The results, summarized in Table
2, demonstrate that VectorFit outperforms the baselines on SQuAD
v1.1 giving 0.9% better F1 score on an average. It achieves supe-
rior results compared to Full-FT with 1250× fewer parameters. On
SQuAD v2.0, VectorFit delivers performance comparable to Full-FT
and the best-performing baselines, highlighting its efficiency and ef-
fectiveness.

Table 2. Performance results for DeBERTaV3-base fine-tuned on SQuAD
v1.1 and SQuAD v2.0 are presented. # Params indicates the percentage of
trainable parameters. The metrics reported are Exact Match and F1 scores
(EM/F1).

Model Squad v1.1 (EM/F1) Squad v2.0 (EM/F1)

Full FT 86.0 / 92.7 85.4 / 88.4

Params 0.08% 0.08%

HAdapter 84.4 / 91.5 83.4 / 86.6
PAdaptor 84.4 / 91.7 84.2 / 87.2

LoRA 86.4 / 92.8 84.6 / 87.5
AdaLora 86.8 / 93.0 84.7 / 87.6

Pissa 85.9 / 92.3 84.2 / 87.3
SVFT 86.3 / 92.5 84.3 / 87.3

VectorFit 87.0 / 93.2 84.4 / 87.6

5.3 Natural Language Generation

We evaluate VectorFit on the XSum and CNN/DailyMail datasets us-
ing the ROUGE (1/2/L) metrics in Table 3. Despite a 33.3% higher
relative parameter efficiency than the baselines, VectorFit consis-
tently outperforms them on both datasets. Notably, VectorFit recov-
ers 95% of Full-FT Rouge-L score with only 0.12% trainable pa-
rameters, compared to the baselines that recover 86% accuracy with

Table 3. Performance results for BART-large fine-tuned on the XSum and CNN/DailyMail datasets are shown. The # Params column represents the percentage
of trainable parameters. The reported metrics are ROUGE-1, ROUGE-2, and ROUGE-L (R-1/2/L).

Method # Params Xsum CNN/Dailymail

Full FT 100% 45.49 / 22.33 / 37.26 44.16 / 21.28 / 40.90

PAdapter 0.16% 40.21 / 18.92 / 32.34 41.96 / 19.47 / 38.10
LoRA 0.16% 42.81 / 19.68 / 34.73 43.68 / 20.63 / 40.71

AdaLoRA 0.16% 43.29 / 19.95 / 35.04 43.94 / 20.83 / 40.96
Pissa 0.16% 42.67 / 19.51 / 34.16 42.97 / 20.04 / 40.11
SVFT 0.15% 43.30 / 19.82 / 35.13 43.87 / 20.72 / 40.80

VectorFit 0.12% 43.28 / 20.71 / 35.42 44.01 / 21.60 / 40.98

Table 4. Comparison of various methods for Gemma-7B and Llama-3-8B models, fine-tuned for mathematical reasoning. The table includes number of
parameters and accuracy on GSM-8k and MATH benchmarks.

Method Gemma-7B Llama-3-8B

Params GSM-8k MATH # Params GSM-8k MATH

Full FT 8.5B 74.67 25.70 8.0B 64.13 16.24

LoRA (r=1) 0.82M 72.4 26.28 1.77M 68.84 20.94
AdaLoRA (r=1) 0.81M 72.5 26.41 1.77M 68.73 21.09

Pissa 0.82M 72.3 26.31 1.77M 67.92 21.01
SVFT 0.43M 73.50 27.30 0.48M 69.22 20.44

VectorFit 0.43M 73.94 27.41 0.48M 70.83 21.02

Table 5. The performance results for ViT-base fine-tuned on the CIFAR10, GTSRB, MNIST, and RESISC45 datasets are presented. The # Params column
indicates the proportion of trainable parameters, and the corresponding image classification accuracies are reported. Section 6.3 contains more details about the
variations of VectorFit.

Method # Params CIFAR10 GTSRB MNIST RESISC45

Full-FT 100% 98.5 99.2 99.8 95.7

LoRA 0.3% 98.4 99.2 99.7 95.8
AdaLoRA 0.3% 98.6 99.3 99.6 95.8

SVFT 0.3% 98.7 99.5 99.6 95.0
VectorFit (Σ) 0.06% 98.6 98.0 98.3 92.2

VectorFit (no avf) 0.1% 99.0 99.6 99.0 94.4
VectorFit 0.1% 99.1 99.8 99.4 95.1

0.16% trainable parameters on the Xsum dataset. VectorFit’s perfor-
mance surpasses Full-FT on CNN/Dailymail dataset, demonstrating
superior efficiency and performance on complex tasks. Additionally,
we evaluate VectorFit for mathematical reasoning with Gemma-7B
and Llama-3-8B, as shown in Table 4, highlighting that our method
scales well to larger base model sizes.

5.4 Image Classification

Table 5 showcases the results on image classification tasks. Our
method surpasses Full-FT performance with only 0.1% trainable
parameters. VectorFit achieves comparable results to the baselines
while maintaining 80% higher relative parameter efficiency. Notably,
VectorFit (Σ) demonstrates the highest parameter efficiency, with an
average accuracy reduction of just 1.5% compared to Full-FT.

5.5 Image Generation

Table 6 summarizes the results of personalized image generation us-
ing Dreambooth-style fine-tuning [34]. The evaluation is conducted
using three metrics: DINO, CLIP-I, and CLIP-T, as outlined in [34].
Our method recovers an average DINO, CLIP-I, and CLIP-T score of

Table 6. Quantitative evaluation of Stable Diffusion v1.4 fine-tuned with
PEFT methods using Dreambooth approach for Subject-driven Image genera-
tion. We evaluate subject fidelity using DINO and CLIP-I, and prompt fidelity
using CLIP-T. Higher values indicate better performance across all metrics. #
Params indicates the percentage of trainable parameters.

Method # Params DINO CLIP-I CLIP-T

Full-FT 100% 0.651 0.817 0.293
LoRA 0.04% 0.636 0.789 0.286

VectorFit 0.04% 0.642 0.796 0.289

98.2% of Full-FT accuracy as opposed to 97.3% achieved by LoRA
with 0.04% of trainable parameters. Figure 12 provides a visual com-
parison between Full-FT and VectorFit.

6 Discussion

6.1 Effect of Adaptive Vector Freezing

Proposition 1. AVF has an effect comparable to that of dropout.
Proof. Let nu represent the total number of training/gradient up-

date steps. The gradient of a vector v with respect to loss L is ∇vL.

Figure 3. The training strength Sv of each trainable vector after fine-tuning of DeBERTaV3-base on the COLA dataset is shown for VectorFit without AVF
(left) and with AVF (right). The x-axis represents the layer index, while the y-axis corresponds to different types of trainable vectors. The heatmaps show the
regularization effect (overall lower Sv values) and the balanced training achieved with AVF.

The expected gradient for the vector v per step without AVF is ex-
pressed as:

E [∇vL] =
1

nu

nu∑
i=1

(∇vL)[i] (6)

With nf AVF steps, the training process can be divided into nf+1
gradient update intervals. Let pj denote the probability that a vector
v is frozen during the interval j. Let is and ie be the temporary vari-
ables that denote the first and last gradient update step within each
interval respectively. The expected gradient update per step for v un-
der AVF can be expressed as:

Ef [∇vL] =
1

nu

nf+1∑
j=1

ie∑
i=is

(1− pj) (∇vL)[i] (7)

=
1

nu

 nu∑
i=1

(∇vL)[i] −
nf+1∑
j=1

ie∑
i=is

(pj) (∇vL)[i]

 (8)

Ef [∇vL] = E [∇vL]−
1

nu

nf+1∑
j=1

ie∑
i=is

(pj) (∇vL)[i] (9)

The second term of Eq. 9 captures the regularization effect of AVF.
A similar analysis can be applied to dropout, demonstrating that AVF
effectively minimizes co-adaptation. This effect is empirically vali-
dated in Figure 3.

6.2 Rank Analysis

Proposition 2: If the rank of a matrix is high, it contains more infor-
mation compared to its low-rank counterpart.

Proof. Let A be a matrix of dimensions m × n with rank p. Sup-
pose A is decomposed using Singular Value Decomposition (SVD)
as:

A = UΣV T ,

where U and V are orthonormal matrices, and Σ is a diagonal matrix
containing singular values.

Now, consider a lower-rank approximation of A, denoted as Ak,
with rank k such that k < p. The truncated SVD of Ak is given by:

Ak = UkΣkV
T
k ,

where Uk, Vk, and Σk correspond to the top k singular components
of A.

The difference in Frobenius norm between A and Ak is given by:

∥A−Ak∥F =

√√√√ p∑
i=k+1

σ2
i ,

where σi are the singular values of A.
This difference represents the information loss due to low-rank ap-

proximation. Since the Frobenius norm quantifies the variance within
the matrix, reducing the rank leads to a loss in variance informa-
tion. Therefore, a higher-rank matrix retains more information than
its lower-rank approximation.

Proposition 3: Singular vector updates lead to high-rank incre-
mental matrices.

Proof. Consider the incremental weight matrix ∆∗:

∆∗ = Winit −Wfinal

Expressing in terms of singular value decomposition:

∆∗ = UΣinitV
T − UΣfinalV

T

∆∗ = U∆ΣV T

Since U and V are orthogonal matrices, the rank of ∆∗ is upper
bounded by the rank of ∆Σ. This ensures that ∆∗ achieves a full-
rank incremental update when all singular values are updated, mean-
ing no singular values are truncated.

Furthermore, by the Eckart–Young–Mirsky theorem [41], the best
rank-k approximation of a matrix A is obtained by retaining the top k
singular values. Conversely, if no singular values are truncated (i.e.,
all singular values are updated or remain nonzero), the approximation
∆∗ preserves the full rank:

r = min(dr, dc).

where dr and dc are the dimensions of weight matrix. This confirms
that singular vector updates lead to high-rank incremental matrices.
We experimentally verify this by plotting the singular values of ∆∗

from randomly selected layers as shown in Figure 10 of Appendix
D.4.

Table 7. Ablation study to analyze the efficacy of AVF. The table presents results for L1 regularization, Random Vector Freezing, and AVF.

Method SST-2 CoLA RTE MRPC STSB SQuAD v1.1 SQuAD v2.0

L1 regularization 90.02 64.74 69.38 74.77 84.53 71.3 / 74.5 60.9 / 63.1
Random vector freezing 94.16 70.13 82.82 91.26 90.17 85.1 / 91.7 82.8 / 85.9

Adaptive vector freezing (AVF) 96.10 70.94 84.12 92.16 91.76 87.0 / 93.2 84.4 / 87.6

6.3 Ablations on Choice of Vectors and AVF

This section presents the experiments that reveal the contribution of
different vectors and the AVF mechanism to the performance of Vec-
torFit. To this end, we explore 5 variants of VectorFit.

VectorFit (Σa): The singular vectors corresponding to {q, k, v, o}
are trained.

VectorFit (Σ): The singular vectors corresponding to
{q, k, v, o, f1, f2} are trained.

VectorFit (Σa + b): The singular vectors corresponding to
{q, k, v, o} and all the bias vectors are trained.

VectorFit (no avf): The singular vectors corresponding to
{q, k, v, o, f1, f2} and all the bias vectors are trained.

VectorFit: The singular vectors corresponding to
{q, k, v, o, f1, f2} and all the bias vectors are trained along
with AVF.

Figure 4 presents the results of fine-tuning the DeBERTaV3-
base model across five variants mentioned above on QA tasks. On
the SQuADv1.1 dataset, the performance difference between Vec-
torFit (no AVF) and VectorFit is 0.2%. On the more challenging
SQuADv2.0 dataset, this difference increases to 0.5%, highlighting
the critical role of AVF. Additionally, the average 1% performance
gap between VectorFit (Σa) and VectorFit (Σ) underscores the im-
portance of singular vectors associated with the fully connected mod-
ules (f1 and f2) in the transformer block. Lastly, the performance dif-
ference between VectorFit (Σa) and VectorFit (Σa + b) emphasizes
the significance of training the bias vectors.

Figure 8 provides a similar analysis on the GLUE benchmark,
yielding results consistent with the observations discussed earlier.
Further examination of the training strength of various vectors for
different VectorFit variants fine-tuned on the COLA dataset is in-
cluded in Appendix D.1.

Figure 4. Ablation study about AVF and different trainable vectors config-
uration. We report the F1 scores for SQuAD v1.1 and SQuAD v2.0 datasets
of QA task.

6.4 Efficacy of AVF Against Other Possible
Approaches

In this section, we present the experiments conducted by replacing
AVF with other possible approaches. We explore L1 regularization

and Random vector freezing, where we randomly freeze trainable
vectors. From Table 7 it can be seen that AVF consistently outper-
forms the other two possible approaches. A key distinction between
AVF and L1 regularization lies in the granularity at which they op-
erate. Standard L1 regularization regularizes individual singular val-
ues, whereas AVF targets the overall strength of training of singular
vectors and bias vectors. We hypothesize that regularizing individual
singular values may constrain the model’s expressiveness, as it in-
directly limits the flexibility of the associated left and right singular
vectors. Random vector freezing performs better than L1 regulariza-
tion but it leads to slower and unstable training. On the other hand,
AVF leads to higher performance with stable training.

6.5 Limitations

Although VectorFit demonstrates exceptional performance with high
parameter efficiency, the AVF mechanism’s effectiveness depends on
careful hyperparameter selection, a challenge shared by comparable
methods like AdaLoRA. To overcome this, we provide some heuris-
tics for hyperparameter selection in Appendix C. Another limitation
is that the number of trainable parameters is currently bounded, as no
new parameterized weights are introduced. In future work, we aim
to address this by exploring the parameterization of left and right
singular matrices, potentially increasing the upper limit of trainable
parameters and further enhancing the method’s flexibility and perfor-
mance.

7 Conclusion

We introduce VectorFit, a novel PEFT approach that extracts mean-
ingful singular vectors from weight matrices using SVD and adap-
tively trains the singular and bias vectors. This method enables high-
rank and intrinsic knowledge-aware adaptation of pre-trained mod-
els, significantly enhancing both model performance and parameter
efficiency. Through comprehensive experiments across diverse lan-
guage and vision tasks, we demonstrate that VectorFit surpasses ex-
isting methods in terms of performance as a function of parameter ef-
ficiency. Also, utilizing VectorFit to fine-tune PFMs for downstream
tasks is straightforward and cost effective. Additionally, we provide
extensive theoretical and empirical insights into its operation to en-
able further research in this area. In future, we plan to conduct mathe-
matical analysis of weight matrix transformations during fine-tuning,
aiming to develop novel parameterization strategies beyond singular
vectors and biases.

References
[1] G. Cheng, J. Han, and X. Lu. Remote sensing image scene classifica-

tion: Benchmark and state of the art. 2017. URL http://dx.doi.org/10.
1109/JPROC.2017.2675998.

[2] K. Cobbe and et al. Training verifiers to solve math word problems. In
Arxiv.org, 2021. URL arXiv:2110.14168.

[3] M. Dehghani, J. Djolonga, and et al. Scaling vision transformers to 22
billion parameters, 2023. URL https://arxiv.org/abs/2302.05442.

http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1109/JPROC.2017.2675998
arXiv:2110.14168
https://arxiv.org/abs/2302.05442

[4] L. Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
2012.

[5] T. Dettmers and et al. Qlora: efficient finetuning of quantized llms. In
Proceedings of the 37th International Conference on Neural Informa-
tion Processing Systems, Red Hook, NY, USA, 2024.

[6] N. Ding, X. Lv, and et al. Sparse low-rank adaptation of pre-trained lan-
guage models. In The 2023 Conference on Empirical Methods in Nat-
ural Language Processing, 2023. URL https://openreview.net/forum?
id=jxgz7FEqWq.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, and et al. An image is worth
16x16 words: Transformers for image recognition at scale, 2021. URL
https://arxiv.org/abs/2010.11929.

[8] A. Grattafiori, A. Dubey, A. Jauhri, and A. Pandey. The llama 3 herd of
models. Technical report, Meta, https://arxiv.org/abs/2407.21783, 2024.

[9] J. He and et al. Towards a unified view of parameter-efficient trans-
fer learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=0RDcd5Axok.

[10] P. He, J. Gao, and W. Chen. Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing, 2023.
URL https://arxiv.org/abs/2111.09543.

[11] D. Hendrycks, C. Burns, and et al. A new proof of eckart-young-mirsky
theorem. In Arxiv.org, 2021. URL arXiv:2103.03874.

[12] N. Houlsby, , and et al. Parameter-efficient transfer learning for NLP.
CoRR, 2019. URL http://arxiv.org/abs/1902.00751.

[13] E. J. Hu and et al. Lora: Low-rank adaptation of large language models,
2021. URL https://arxiv.org/abs/2106.09685.

[14] S. A. Koohpayegani, N. K. L, and et al. NOLA: Compressing loRA
using linear combination of random basis. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=TjfXcDgvzk.

[15] D. J. Kopiczko, T. Blankevoort, and Y. M. Asano. VeRA: Vector-based
random matrix adaptation. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?
id=NjNfLdxr3A.

[16] A. Krizhevsky. Learning multiple layers of features from tiny images.
2009. URL https://api.semanticscholar.org/CorpusID:18268744.

[17] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for
parameter-efficient prompt tuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, 2021.
URL https://aclanthology.org/2021.emnlp-main.243/.

[18] M. Lewis, Y. Liu, and et al. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and compre-
hension. In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, 2020. URL https://aclanthology.
org/2020.acl-main.703/.

[19] J. Li and et al. Pretrained language models for text generation: A survey,
2021. URL https://arxiv.org/abs/2105.10311.

[20] R. Li, L. B. allal, and et al. Starcoder: may the source be with
you! Transactions on Machine Learning Research, 2023. URL https:
//openreview.net/forum?id=KoFOg41haE.

[21] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, 2021. URL https:
//aclanthology.org/2021.acl-long.353/.

[22] V. Lingam, A. T. Neerkaje, and et al. SVFT: Parameter-efficient fine-
tuning with singular vectors. In 2nd Workshop on Advancing Neural
Network Training: Computational Efficiency, Scalability, and Resource
Optimization (WANT@ICML 2024), 2024. URL https://openreview.net/
forum?id=DOUskwCqg5.

[23] W. Liu, Z. Qiu, Y. Feng, and et al. Parameter-efficient orthogonal fine-
tuning via butterfly factorization. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/
forum?id=7NzgkEdGyr.

[24] F. Meng, Z. Wang, and M. Zhang. Pissa: Principal singular values and
singular vectors adaptation of large language models. In Thirty-eigth
Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=6ZBHIEtdP4.

[25] R. Nallapati, B. Zhou, and et al. Abstractive text summarization us-
ing sequence-to-sequence RNNs and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural Language Learn-
ing. Association for Computational Linguistics, 2016. URL https:
//aclanthology.org/K16-1028/.

[26] S. Narayan and et al. Don‘t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization.
In Proceedings of the 2018 Conference on Empirical Methods in Nat-

ural Language Processing. Association for Computational Linguistics,
2018. URL https://aclanthology.org/D18-1206/.

[27] A. Paszke and et al. Pytorch: an imperative style, high-performance
deep learning library. In Proceedings of the 33rd International Confer-
ence on Neural Information Processing Systems, Red Hook, NY, USA,
2019.

[28] J. Pfeiffer and et al. Adapterfusion: Non-destructive task composition
for transfer learning, 2021. URL https://arxiv.org/abs/2005.00247.

[29] Z. Qiu, W. Liu, H. Feng, and et al. Controlling text-to-image diffusion
by orthogonal finetuning. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023. URL https://openreview.net/forum?
id=K30wTdIIYc.

[30] A. Radford, J. W. Kim, and et al. Robust speech recognition via large-
scale weak supervision, 2022. URL https://arxiv.org/abs/2212.04356.

[31] R. Rafailov, A. Sharma, and et al. Direct preference optimization:
Your language model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=HPuSIXJaa9.

[32] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+
questions for machine comprehension of text, 2016. URL https://arxiv.
org/abs/1606.05250.

[33] R. Rombach and et al. High-resolution image synthesis with latent dif-
fusion models. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. URL https://api.semanticscholar.
org/CorpusID:245335280.

[34] N. Ruiz, Y. Li, and et al. Dreambooth: Fine tuning text-to-image diffu-
sion models for subject-driven generation, 2023. URL https://arxiv.org/
abs/2208.12242.

[35] A. Shi and Z. DeVito. Understanding gpu memory 1: Visu-
alizing all allocations over time. URL https://pytorch.org/blog/
understanding-gpu-memory-1/.

[36] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign recog-
nition. Selected Papers from IJCNN 2011, 2012. URL https://www.
sciencedirect.com/science/article/pii/S0893608012000457.

[37] C. Sun, J. Wei, and et al. Svfit: Parameter-efficient fine-tuning of large
pre-trained models using singular values, 2024. URL https://arxiv.org/
abs/2409.05926.

[38] G. Team. Gemma: Open models based on gemini research and technol-
ogy. In Arxiv.org, 2024.

[39] H. Touvron, T. Lavril, and et al. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

[40] A. Wang and et al. Glue: A multi-task benchmark and analysis platform
for natural language understanding, 2019. URL https://arxiv.org/abs/
1804.07461.

[41] H. Wang. A new proof of eckart-young-mirsky theorem. In
Preprints.org, 2025. URL https://doi.org/10.20944/preprints202502.
1203.v1.

[42] T. Wolf, L. Debut, V. Sanh, and et al. Huggingface’s transformers: State-
of-the-art natural language processing, 2020. URL https://arxiv.org/abs/
1910.03771.

[43] C. Xu, Q. Sun, K. Zheng, and et al. WizardLM: Empowering large
pre-trained language models to follow complex instructions. In The
Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=CfXh93NDgH.

[44] Y. Xu, L. Xie, X. Gu, and et al. QA-loRA: Quantization-aware low-
rank adaptation of large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=WvFoJccpo8.

[45] L. Yu, W. Jiang, H. Shi, and et al. Metamath: Bootstrap your own
mathematical questions for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=N8N0hgNDRt.

[46] F. Zhang, L. Li, and et al. Increlora: Incremental parameter allocation
method for parameter-efficient fine-tuning, 2023. URL https://arxiv.org/
abs/2308.12043.

[47] L. Zhang and et al. LoRA-FA: Memory-efficient low-rank adaptation
for large language models fine-tuning, 2024. URL https://openreview.
net/forum?id=RbKThNNFxr.

[48] M. Zhang, H. Chen, and et al. LoRAPrune: Pruning meets low-
rank parameter-efficient fine-tuning, 2024. URL https://openreview.net/
forum?id=9KVT1e1qf7.

[49] Q. Zhang, M. Chen, A. Bukharin, and et al. Adalora: Adaptive budget
allocation for parameter-efficient fine-tuning, 2023. URL https://arxiv.
org/abs/2303.10512.

[50] B. Zi, X. Qi, and et al. Delta-loRA: Fine-tuning high-rank parameters
with the delta of low-rank matrices, 2024. URL https://openreview.net/
forum?id=FAO4VS9QRV.

https://openreview.net/forum?id=jxgz7FEqWq
https://openreview.net/forum?id=jxgz7FEqWq
https://arxiv.org/abs/2010.11929
https://openreview.net/forum?id=0RDcd5Axok
https://arxiv.org/abs/2111.09543
arXiv:2103.03874
http://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://api.semanticscholar.org/CorpusID:18268744
https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2020.acl-main.703/
https://arxiv.org/abs/2105.10311
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/2021.acl-long.353/
https://openreview.net/forum?id=DOUskwCqg5
https://openreview.net/forum?id=DOUskwCqg5
https://openreview.net/forum?id=7NzgkEdGyr
https://openreview.net/forum?id=7NzgkEdGyr
https://openreview.net/forum?id=6ZBHIEtdP4
https://aclanthology.org/K16-1028/
https://aclanthology.org/K16-1028/
https://aclanthology.org/D18-1206/
https://arxiv.org/abs/2005.00247
https://openreview.net/forum?id=K30wTdIIYc
https://openreview.net/forum?id=K30wTdIIYc
https://arxiv.org/abs/2212.04356
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2208.12242
https://pytorch.org/blog/understanding-gpu-memory-1/
https://pytorch.org/blog/understanding-gpu-memory-1/
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://arxiv.org/abs/2409.05926
https://arxiv.org/abs/2409.05926
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://doi.org/10.20944/preprints202502.1203.v1
https://doi.org/10.20944/preprints202502.1203.v1
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=N8N0hgNDRt
https://arxiv.org/abs/2308.12043
https://arxiv.org/abs/2308.12043
https://openreview.net/forum?id=RbKThNNFxr
https://openreview.net/forum?id=RbKThNNFxr
https://openreview.net/forum?id=9KVT1e1qf7
https://openreview.net/forum?id=9KVT1e1qf7
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://openreview.net/forum?id=FAO4VS9QRV
https://openreview.net/forum?id=FAO4VS9QRV

Appendix
A Memory Usage
As discussed in Section 3.1, while retaining the left and right singular matrices increases the overall parameter count, the practical impact is
minimal. Figure 5 compares the GPU memory usage of VectorFit and LoRA (r = 1) on the MNLI dataset using DeBERTaV3-base with full
precision training. The figure demonstrates that both methods use comparable amounts of memory, where VectorFit requires approximately
200MB of additional memory using 0.08% of trainable parameters. Figure 6 shows the GPU memory consumption comparison between LoRA,
VectorFit, and SVFT with different base models. We observe that VectorFit consumes higher memory compared to LoRA on larger models
while using significantly less memory than that of SVFT. The experiments were conducted on an Nvidia A100 GPU with 40GB of RAM.

Figure 5. PyTorch memory trace [35] comparison of 4 training steps for LoRA (r = 1) on the top and VectorFit on the bottom.

Figure 6. Memory usage.

B Training Speed
We fine-tune DeBERTaV3-base on the MNLI dataset with full precision and on the SQuAD v2.0 dataset with mixed precision training to
assess the training speed of VectorFit, measured as the time required to train one epoch. Table 8 shows that VectorFit reduces training time
by 17.5% on MNLI and 16.6% on SQuAD v2.0 compared to baseline. This improvement is due to VectorFit’s simpler computational graph
compared to other methods, resulting in faster processing. This experiment was conducted on an Nvidia Titan XP GPU with 12GB of RAM.

C Implementation Details
This section outlines the implementation details of our method and the baselines used in various experiments. Most of our experiments were
conducted on the NVIDIA A100(40G) GPU. We employ the AdamW optimizer with β1 = 0.9 and β2 = 0.999, no warmup, and no weight

Table 8. Comparison of practical training time.

Dataset # Params Method Time / Epoch

MNLI

0.08% LoRA 82 min
0.08% AdaLoRA 91 min
0.08% VectorFit 75 min
0.07% VectorFit (Σa + b) 71 min
0.01% VectorFit (Σa) 64 min

SQuAD v2.0

0.08% LoRA 98 min
0.08% AdaLoRA 108 min
0.08% VectorFit 90 min
0.07% VectorFit (Σa + b) 84 min
0.01% VectorFit (Σa) 75 min

decay for all our experiments. For the AVF-related hyperparameters, we adopt the following values as a general guideline:

• ti: Approximately 11 epochs’ worth of training steps to ensure proper warm-up for all trainable vectors.
• tf : Approximately 1 epoch’s worth of training steps to allow for significant updates to the trainable vectors.
• k ≤ 5: As this value is generally observed to yield the best performance with stable training.

C.1 Natural Language Understanding

Table 9 gives the hyperparameters used for each task in GLUE benchmark. We experimented using the following learning rates (1e− 2, 1e−
3, 1e− 4, 3e− 4, 5e− 4) and observed that 1e− 3 works best for all tasks in GLUE.

Table 9. Hyperparameter setup of VectorFit for GLUE benchmark.

Dataset learning rate epochs batch size ti tf nf k

MNLI 1e− 03 20 32 135000 10000 5 5
SST2 1e− 03 30 32 23200 2100 10 5
COLA 1e− 03 35 32 3000 200 5 5
QQP 1e− 03 25 32 125100 11000 10 5
QNLI 1e− 03 25 32 36000 3200 10 5
RTE 1e− 03 50 32 800 70 27 5

MRPC 1e− 03 50 32 1260 110 27 5
STSB 1e− 03 50 32 1900 180 27 5

Table 10 presents the hyperparameters related to budget allocation of the baselines. d is the hidden dimension for the adapters, r is the rank
of LoRA incremental weight matrices, and b(T) is the target budget of AdaLoRA. We use SVFT with random setting and d = 2.

Table 10. Budget setup of baselines for GLUE benchmark.

Params Houlsby Adapter (d) Pfeiffer Adapter (d) LoRA (r) AdaLoRA (b(T))

1.2M 32 64 8 576
0.6M 16 32 4 288
0.3M 8 16 2 144

C.2 Question Answering

Table 11 gives the hyperparameters used for each dataset of QA task. We experimented using the following learning rates (1e−2, 1e−3, 1e−
4, 3e− 4, 5e− 4) and observed that 1e− 3 works best for both datasets of QA task.

Table 11. Hyperparameter setup of VectorFit for question answering tasks.

Dataset learning rate epochs batch size ti tf nf k

Squad v1.1 1e− 03 20 16 60700 5500 6 5
Squad v2.0 1e− 03 20 16 90300 8200 6 5

Table 12 presents the hyperparameters related to budget allocation of the baselines.

Table 12. Budget setup of baselines for QA tasks.

Params Houlsby Adapter (d) Pfeiffer Adapter (d) LoRA (r) AdaLoRA (b(T)) SVFT (d)

0.08% 4 8 1 72 1

C.3 Natural Language Generation

Table 13 gives the hyperparameters used for each dataset of NLG task. We experimented using the following learning rates (1e − 2, 1e −
3, 1e− 4, 3e− 4, 5e− 4) and observed that 1e− 3 works best for both datasets of NLG task.

Table 13. Hyperparameter setup of VectorFit for natural language generation tasks.

Dataset learning rate epochs batch size ti tf nf k

XSum 1e− 03 30 64 35070 3100 10 5
CNN/Dailymail 1e− 03 30 64 31500 4400 10 5

Table 14 presents the hyperparameters related to budget allocation of the baselines used for experiments with Xsum and CNN/Dailymail
datasets for NLG task.

Table 14. Budget setup of baselines for NLG tasks.

Houlsby Adapter (d) Pfeiffer Adapter (d) LoRA (r) AdaLoRA (b(T)) SVFT (d)

8 16 2 144 2

C.4 Image Classification

Table 15 gives the hyperparameters used for each dataset of image classification task. We experimented using the following learning rates
(1e− 2, 1e− 3, 1e− 4, 3e− 4, 5e− 4) and the best performing learning rates are given in the table.

Table 15. Hyperparameter setup of VectorFit for image classification tasks.

Dataset learning rate epochs batch size ti tf nf k

CIFAR10 1e− 03 20 128 3600 300 4 5
GTSRB 1e− 03 20 128 1900 170 4 5
MNIST 1e− 02 20 128 4300 350 4 5

RESISC45 1e− 02 20 128 2300 200 4 5

For the baselines, we use LoRA with r = 2, AdaLoRA with b(T) = 144, and SVFT with d = 2.

C.5 Image Generation

Dreambooth fine-tuning for various subjects in the dataset were done using prior preservation loss with the weightage varying between 0.5 to
1.0 depending on the subject. We use 300 class images for each subject, a learning rate of 5e − 5, and a batch size of 4. We use the rank of 2
for fine-tuning with LoRA.

D Additional Experiments
D.1 Training Strength Ablation

Figure 7 shows the training strength heatmap of various trainable vectors for different variants of VectorFit. We can observe that VectorFit
with AVF (top-right) achieves the most equitable training possible among the trainable vectors and hence maintains an overall lower training
strength. We can also observe that as the number of trainable vectors is reduced, the training strength of the vectors increases to make up for
the reduced number of trainable parameters.

D.2 NLU Tasks Ablation

Figure 8 shows the ablation graphs for the GLUE benchmark with all five variants of our method. The graphs show the efficacy of AVF where
VectorFit with AVF gives a higher performance on all the datasets.

Figure 7. The training strength Sv of each trainable vector after fine-tuning of DeBERTaV3-base on the COLA dataset is shown for VectorFit without AVF
(top-left), VectorFit with AVF (top-right), VectorFit (Σ) (bottom-left), and VectorFit (Σa) (bottom-right). The x-axis represents the layer index, while the y-axis
corresponds to different types of trainable vectors.

Figure 8. Ablation study about AVF and different trainable vectors configuration on the GLUE benchmark. We report the matched accuracy for MNLI,
Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for the other tasks.

D.3 QA Tasks Ablation

Table 16 presents the performance of various VectorFit variants. Notably, the most parameter-efficient version, VectorFit(Σa), which uses only
0.01% of trainable parameters, achieves up to 98% of the F1 score obtained with Full-FT.

Table 16. Ablation study on QA.

Model # Params Squad v1.1 (EM/F1) Squad v2.0 (EM/F1)

VectorFit (Σa) 0.01% 83.8/91.0 80.2/83.9
VectorFit (Σ) 0.02% 84.9/91.9 81.6/85.0

VectorFit (Σa + b) 0.07% 86.4/92.6 83.7/86.6
VectorFit (no avf) 0.08% 86.7/93.0 84.2/87.1

VectorFit 0.08% 87.0/93.2 84.4/87.6

D.4 Rank Analysis Continued

Figure 10 presents the singular value distributions of the ∆∗ matrices discussed in Section 6.2. For the DeBERTaV3-base model, each singular
vector is 768-dimensional, and all 768 singular values are plotted. The graphs reveal that ∆∗ for Full-FT is not inherently low-rank, as even
the smallest singular values remain non-zero for many weight matrices. Additionally, the plots demonstrate that VectorFit achieves high-rank
adaptation, closely approximating Full-FT for several weight matrices. Figure 9 shows the singular values of ∆∗ of ViT-base model fine-tuned
with VectorFit on CIFAR10 dataset.

Figure 9. Singular value graphs of ∆∗ for all the modules of a randomly picked layer (layer 6) of ViT-base model fine-tuned with VectorFit on CIFAR10
dataset. X-axis represents the singular value position/index and Y-axis represents the singular value.

Figure 10. Singular value graphs of ∆∗ for all the modules of randomly picked layers in case of VectorFit and Full-FT. X-axis represents the singular value
position/index and Y-axis represents the singular value.

D.5 Weight Transformation During VectorFit Fine-Tuning

The heatmap of variation of the first 64 singular values before and after full fine-tuning in each singular vector of randomly selected layers
is displayed in Figure 11. This depicts the weight matrix’s stretching in its multi-dimensional hyper-space. It should be noted that upon

fine-tuning, even the least significant singular directions might become the principal singular directions. This shows that VectorFit is highly
expressive.

Figure 11. Heatmap representing the variations in first 64 singular values of different singular vectors before and after fine-tuning. The heatmaps are generated
with randomly picked layers of DeBERTaV3-base model fine-tuned using VectorFit on COLA dataset.

Figure 12. Visual comparison of images generated by Stable Diffusion v1.4 fine-tuned with VectorFit and Full-FT methods using Dreambooth approach for
Subject-driven Image generation.

	Introduction
	Related Work
	VectorFit
	Vector Fine-Tuning
	Adaptive Vector Freezing

	Experiments
	Tasks and Datasets
	Base Models

	Results
	Natural Language Understanding
	Question Answering
	Natural Language Generation
	Image Classification
	Image Generation

	Discussion
	Effect of Adaptive Vector Freezing
	Rank Analysis
	Ablations on Choice of Vectors and AVF
	Efficacy of AVF Against Other Possible Approaches
	Limitations

	Conclusion
	Memory Usage
	Training Speed
	Implementation Details
	Natural Language Understanding
	Question Answering
	Natural Language Generation
	Image Classification
	Image Generation

	Additional Experiments
	Training Strength Ablation
	NLU Tasks Ablation
	QA Tasks Ablation
	Rank Analysis Continued
	Weight Transformation During VectorFit Fine-Tuning

