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Abstract—As modern software development increasingly relies
on reusable libraries and components, managing dependencies
has become critical for ensuring software stability and security.
However, challenges such as outdated dependencies, missed
releases, and the complexity of interdependent libraries can
significantly impact project maintenance. In this paper, we
present a quantitative analysis of the Neo4j dataset using the
Goblin framework to uncover patterns of freshness in projects
with different numbers of dependencies. Our analysis reveals that
releases with fewer dependencies have a higher number of missed
releases. Additionally, our study shows that the dependencies in
the latest releases have positive freshness scores, indicating better
software management efficacy. These results can encourage better
management practices and contribute to the overall health of
software ecosystems.

Index Terms—Dependency management, freshness patterns,
Maven, software stability, missed releases

I. INTRODUCTION

The growing complexity of software systems has led to
more use of external dependencies. These dependencies help
developers build software quickly, reduce redundancy, and en-
hance functionality. They also promote standardization and im-
prove interoperability across different software systems [1] [2].
Repositories such as Maven Central play an important role
in the software development ecosystem by hosting millions
of libraries and their releases [3]. Developers can access
these libraries to speed up innovation and reduce development
efforts. The variety of libraries available allows developers to
address domain-specific challenges efficiently [4].

However, using so many dependencies creates problems,
such as outdated libraries, missed updates, and compatibility
issues between evolving software components. Keeping track
of these dependencies and managing them can be difficult. A
key but often overlooked factor in dependency management
is freshness [5]. Freshness measures how current a release is
by looking at how many newer releases are available and how
much time has passed since the latest release. This metric is
essential for managing dependencies effectively.

Despite the importance of these metrics, there is a lack of
studies that explore how freshness varies across different types
of dependencies. This gap leaves project maintainers without
enough insights into the health of their dependencies, which
makes it harder for them to make informed decisions about
updates and version management.

In our study, we investigate how the dependency structures
in the Maven ecosystem affect the maintenance and release

management of software projects. Specifically, we want to
understand if projects with a larger number of dependencies
face more challenges in keeping their dependencies up to date
and experiencing longer periods of outdated dependencies. We
also want to explore how much of the dependencies in the
latest releases are outdated, which can highlight the difficulties
of maintaining up-to-date software in complex dependency
environments. Our main goal is to uncover freshness patterns
across a few different areas and address the following research
questions (RQs):

RQ1: Do projects with a large number of dependencies tend
to have a higher “outdated time” or missed releases compared
to those with fewer dependencies?

– The findings from this question can provide valuable
insights into how the number of dependencies affects project
maintenance. By understanding the relationship between de-
pendency counts and outdated dependencies, developers can
optimize update processes, reduce delays, and ensure that de-
pendencies remain up-to-date. This can lead to more efficient
and stable project management.

RQ2: To what extent are the dependencies in the latest
software releases outdated?

– If dependencies in recent releases are found to be out-
dated, it may indicate gaps in update practices or challenges
in maintaining compatibility with newer versions. This could
have implications for software stability and security. Under-
standing these trends can help developers prioritize critical
updates, improve dependency management strategies, and
make more informed decisions when choosing or maintaining
dependencies.

To address the aforementioned RQs, we use the Goblin
Miner tool [6] and the Maven Central Neo4j dataset [7]. By
using this dataset and tool, we aim to highlight the chal-
lenges and trends in managing dependencies within the Maven
Central ecosystem. A comprehensive replication package [8],
including datasets, analysis scripts, and documentation, has
been provided to ensure the reproducibility of this study’s
findings.

II. DATASET

For this study, we use the publicly available Neo4j Maven
Central dependency graph dataset [7]. We work with the
“with metrics goblin maven 30 08 24.dump,” dated August
30, 2024. The database contains over 15 million nodes, includ-
ing 658,078 libraries (artifacts) and 14,459,139 releases. It also
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includes 134 million edges, with 119,660,406 dependencies
and 14,459,139 versioning relationships. The dataset adopts a
dependency graph model with two main types of nodes: Ar-
tifacts (libraries) and Releases (specific versions of artifacts).
Edges in the graph represent release-to-artifact (R→A) and
artifact-to-release (A→R) relationships, showing dependency
and versioning structures. The dataset also includes additional
metadata, such as version ranges, release timestamps, and
scopes (e.g., compile, test), which allow for detailed analysis.

The graph structure allows us to compute various metrics
like freshness, release rhythm, and vulnerability exposure
(CVE data) on-demand using the Goblin framework’s Weaver
component. This flexibility makes the dataset suitable for
exploring key questions about dependency freshness, release
patterns, and ecosystem health.

To ensure the feasibility of the study, we analyze a subset of
the data, focusing on 100,000 libraries and 1,000,000 depen-
dencies. This allows us to examine dependency management
practices while maintaining computational efficiency. This
dataset forms the basis for investigating trends and challenges
in software dependency management within large ecosystems.

III. ANALYSIS AND RESULTS

A. Dependency Counts and Freshness

1) Methodology: We use the dependency relationship be-
tween releases and artifacts to determine the number of
dependencies a release possesses. To assess freshness, we
extract different freshness scores using the AddedValue edge.
The dataset contains 119,660,406 dependencies, but for com-
putational convenience, we analyze a subset of 1,000,000
dependencies (≈ 0.84% of the total). This subset of de-
pendencies comes from 107,916 releases, with the minimum
number of dependencies for a single release being 1 and the
maximum being 417. By selecting this smaller subset, we
balance computational efficiency with the need to capture a
broad range of dependency management practices. Although
the subset represents only 0.84% of the total dependencies, it
still includes data from over 107,000 releases, which is large
enough to reflect diverse patterns and trends within the dataset.
Dependencies in software ecosystems often follow predictable
patterns [9], making this subset large enough for meaningful
analysis.

2) Findings: Figure 1 represents the Kernel Density Esti-
mation (KDE) [10] plot for the distribution of dependencies.
We observe that most of the data is concentrated around the
lower values on the x-axis, near 0 dependencies. This indicates
that most releases have very few dependencies. The long tail
on the right shows that a small number of releases have
very high numbers of dependencies, but these are outliers and
occur less frequently. The peak density is slightly above 0.10,
representing around 10% of the data.

Figure 2 shows the relationship between dependency count
and the number of missed releases across projects. We observe
that most projects have fewer than 50 dependencies. These
projects have a wide range of missed releases, from zero
to over 4000. We notice that projects with high numbers
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Fig. 1. Distribution of Dependencies
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Fig. 2. Dependency Count Vs Number of Missed Releases

of missed releases, such as those exceeding 1000, often
have low to moderate dependency counts. This suggests that
missed releases are not always caused by a high number of
dependencies.

We find that projects with fewer (less than 50) dependencies,
which make up nearly 80% of the dataset, have a lot of varia-
tion in missed releases. These projects often miss around 1500
releases on average. Smaller projects often lack the resources
or maintenance practices needed to update dependencies on
time. Projects with moderate (50 to 200) dependencies tend to
show more consistent updates, averaging around 500 missed
releases. High-dependency (over 200) projects typically miss
fewer than 100 releases. This shows that, despite their com-
plexity, projects with more dependencies manage updates more
effectively.

Further supporting these findings, Figure 3 shows the
outdated times of dependencies for projects with different
dependency counts. We find that low-dependency projects
have outdated times ranging up to 17.5 years, with an av-
erage of about 6 years. Projects with moderate dependency
counts show better control, with an average outdated time of
about 2.5 years. High-dependency projects have the lowest
outdated times, with most staying under 2 years, having some
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Fig. 3. Dependency Count Vs Outdated Time (Years)

exceptions. These projects benefit from regular release cycles,
automated dependency tracking, and proactive updates.

The results show an inverse relationship between depen-
dency counts and maintenance challenges. Smaller projects
tend to struggle with more missed releases and longer outdated
times. Larger projects, however, benefit from structured and
proactive dependency management.

B. Dependency of Latest Releases and Freshness

1) Methodology: To identify the latest releases for each
artifact, we use the relationship AR edge, which connects
artifacts to their releases. We analyze the dependencies of these
latest releases and their freshness using the dependency edge
along with the AddedValue edge. Out of the 658,078 artifacts
in the dataset, we select a subset of 100,000 libraries (≈
15.2%) to ensure computational feasibility while maintaining
statistical validity, as recommended in prior studies [11]. The
selected libraries contain 742,492 dependencies. However,
freshness data is unavailable for 32,066 dependencies, about
4.3% of the total. As a result, we proceed with the remaining
710,426 dependencies (95.7%).

2) Findings: Figure 4 shows the distribution of outdated
times across the dependencies of the latest releases. We
see a sharp concentration near zero, which indicates that
most dependencies are up-to-date. However, a small subset
of dependencies has significantly higher outdated times, with
some exceeding multiple years. The mean outdated time
for dependencies is 2.5 years. This means that while many
dependencies are current, some experience delays in updates.

Figure 5 shows a similar distribution for missed releases
across dependencies. The density is concentrated near zero,
which suggests that most dependencies have few or no missed
releases. However, there are some dependencies with a large
number of missed releases, but these are relatively rare.

The results suggest that dependencies in the latest releases
are generally well-maintained, with minimal missed releases
and short outdated times for most cases. However, some
dependencies have long outdated times and numerous missed
releases, indicating that updates have been neglected in these
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cases. Whether a mean outdated time of 2.5 years is prob-
lematic depends on the project’s needs and how it manages
dependencies. In fast-evolving domains like web frameworks
and cloud applications, updates are needed every few months
to keep up with changing technologies and security require-
ments [12]. In these cases, a 2.5-year delay could lead to
significant technical debt. For more stable or legacy systems,
however, this delay might be acceptable, as older dependencies
can still function effectively [13] [14].

IV. THREATS TO VALIDITY

Our methodology provides a quantitative analysis of de-
pendency management trends based on a large-scale dataset.
However, we must acknowledge several limitations to help
contextualize our findings and their applicability.

We rely on a subset of the Maven Central dataset, consisting
of 100,000 libraries and 1,000,000 dependencies. This raises
concerns about how well our results apply to the broader
dataset. While we chose this subset for computational fea-
sibility, it may not capture patterns found in the larger dataset
with millions of artifacts and releases. This limitation could
overlook trends in less commonly used libraries or niche
areas within the ecosystem. Additionally, we focus only on
Maven Central, which, while widely used, is just one software
repository. Other ecosystems, such as PyPI or npm, may have
different dependency structures and practices, which limits the
generalizability of our findings.



Another limitation comes from the simplicity of the metrics
we use. Metrics like outdatedness and missed releases provide
valuable insights but do not capture more complex aspects of
dependency management. For instance, indirect dependencies,
scope-specific analyses (e.g., test vs. compile dependencies),
and varying update policies could offer a deeper understanding
of the challenges developers face.

Additionally, our results are based on data-driven analysis
and lack validation from case studies or developer interviews.
Qualitative approaches could provide richer insights and con-
firm the observed trends, especially correlations like those
between dependency counts and missed releases. Another po-
tential bias arises from how we select libraries for the analysis.
We choose libraries based on feasibility criteria, which may
skew the sample toward well-maintained or frequently updated
projects. Lastly, we do not account for external factors that
may influence dependency management and release practices.
Community size, project funding, and developer engagement
can all affect how well dependencies are maintained and
updated.

V. RELATED WORKS

Many studies in the past involved the investigation of bug
patterns [15]–[17], vulnerabilities [18], [19], code smells [20]–
[22], code quality [20], [23], human aspects [24]–[28] of
software development and maintenance as well as comparison
of methods/tools [29]–[32] for measuring such aspects.

Software dependency management has become a key focus
in software engineering, especially in large ecosystems like
Maven Central. The development of frameworks like Goblin
provides access to extensive dependency graph data. This
enables real-time analysis of patterns and trends and broadens
the scope of research. We can now explore the effects of
dependency management practices, outdated libraries, and
missed releases across various projects and domains globally.

Assessing how the number of dependencies affects the
project is crucial due to its relevance to software maintenance
and the ecosystem. Cataldo et al. [33] analyzed different types
of dependency data from two independent software projects
over an eight-year period. The analysis suggested software
systems with a large number of dependencies, particularly
logical and work dependencies, tend to be more complex
and can lead to challenges in managing the development
process. One of their research questions also revealed that as
the inter-dependencies among tasks increase, the likelihood of
defects in the software also rises. Tellnes [34] showed that the
security and availability of a system are largely determined
by the surrounding ‘ecosystem’ of dependencies. Prana et
al. [35] highlights the importance of managing the number
of dependencies and performing timely updates.

Several studies have demonstrated the necessity of specific
metrics for quantifying dependency freshness and how it
evolves. Cox et al. [5] performed correlation and longitudinal
analysis to investigate the relationship between dependency
freshness and known security vulnerabilities and to assess the
variability of the metric over time, respectively. Kula et al. [36]

emphasized the importance of keeping dependencies updated,
proposing a Software Universe Graph (SUG) to model depen-
dency relationships and provide metrics for assessing update
needs. Jafari et al. [37] investigated how different package
characteristics can influence the predicted update strategy and
found dependent count to be one of the highest influencing
features. The results of Zerouali et al. [38] show the strong
presence of technical lag and reluctance caused by the specific
use of dependency constraints.

After evaluating the relevant studies, we find that there is
room for further contributions in understanding the character-
istics of dependencies and the freshness of projects. While
existing literature explores dependency management, most
studies focus on broad trends such as dependency growth,
versioning policies, or security vulnerabilities. This leaves
gaps in understanding whether there is a direct connection
between the number of dependencies and the freshness of
software projects, especially in the Maven ecosystem. Limited
attention has been given to evaluating how up-to-date the
dependencies in the latest releases are, which we aim to
address in our study.

VI. CONCLUSION

This study presents an empirical analysis of dependency
management in the Maven Central ecosystem, driven by two
core research questions: whether projects with more depen-
dencies are more likely to miss releases, and to what extent
the dependencies of the latest releases are outdated. We use
quantitative insights to analyze 100,000 libraries and over
1,000,000 dependencies. Our findings reveal that projects with
fewer dependencies are more likely to miss releases, while
projects with more than 200 dependencies tend to have fewer
missed releases. We also find that the dependencies in the latest
releases are generally up-to-date, indicating proactive man-
agement in current software development practices. With the
increasing complexity of software ecosystems, this research
provides actionable insights into the challenges of dependency
management. Understanding patterns of missed releases and
outdated dependencies can inform strategies to improve release
reliability and dependency maintenance. However, it is impor-
tant to acknowledge limitations such as dataset constraints and
the scope of library selection, which may not fully capture
the broader ecosystem of dependencies. Additionally, we did
not include qualitative data, such as developer interviews or
case studies, which could provide deeper insights into the
challenges and strategies behind dependency management.

Future work could explore dependency management prac-
tices across diverse ecosystems or investigate the role of
external factors, such as developer collaboration like direct
surveys or interviews with them and release policies, in shap-
ing dependency health. Real-time modeling of dependency
release trends could also reveal evolving practices in managing
software ecosystems. Ultimately, this research highlights key
dependency trends and their implications, contributing to more
resilient and efficient software engineering practices.
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