2504.18804v1 [cs.SE] 26 Apr 2025

arxXiv

Can We Enhance Bug Report Quality Using LLMs?: An Empirical
Study of LLM-Based Bug Report Generation

Jagrit Acharya
University of Calgary
Calgary, Canada
jagrit.acharyal@ucalgary.ca

ABSTRACT

Bug reports contain the information developers need to triage and
fix software bugs. However, unclear, incomplete, or ambiguous in-
formation may lead to delays and excessive manual effort spent
on bug triage and resolution. In this paper, we explore whether
Instruction fine-tuned Large Language Models (LLMs) can automat-
ically transform casual, unstructured bug reports into high-quality,
structured bug reports adhering to a standard template. We evalu-
ate three open-source instruction-tuned LLMs (Qwen 2.5, Mistral,
and Llama 3.2) against ChatGPT-40, measuring performance on
established metrics such as CTQRS, ROUGE, METEOR, and SBERT.
Our experiments show that fine-tuned Qwen 2.5 achieves a CTQRS
score of 77%, outperforming both fine-tuned Mistral (71%), Llama
3.2 (63%) and ChatGPT in 3-shot learning (75%). Further analysis
reveals that Llama 3.2 shows higher accuracy of detecting missing
fields particularly Expected Behavior and Actual Behavior, while
Qwen 2.5 demonstrates superior performance in capturing Steps-
to-Reproduce, with an F1 score of 76%. Additional testing of the
models on other popular projects (e.g., Eclipse, GCC) demonstrates
that our approach generalizes well, achieving up to 70% CTQRS in
unseen projects’ bug reports. These findings highlight the poten-
tial of instruction fine-tuning in automating structured bug report
generation, reducing manual effort for developers and streamlining
the software maintenance process.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools.

KEYWORDS

Bug report quality, large language models, instruction fine-tuning,
software maintainance, and software engineering

ACM Reference Format:

Jagrit Acharya and Gouri Ginde. 2025. Can We Enhance Bug Report Quality
Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation.
In Proceedings of The 29th International Conference on Evaluation and As-
sessment in Software Engineering (EASE 2025). ACM, New York, NY, USA,
10 pages. https://doi.org/XXXXXXX XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Gouri Ginde

University of Calgary
Calgary, Canada
gouri.deshpande@ucalgary.ca

Can We Enhance Bug Report Quality Using LLMs?: An Empirical
Study of LLM-Based Bug Report Generation

1 INTRODUCTION

Bug reports are essential in software maintenance, providing de-
velopers with critical information to identify, triage, and resolve
software defects [76]. A bug report is a record of a software fault
or defect that is created by an end-user or a tester [1]. However,
the effectiveness of bug reports is often hindered by ambiguity,
incompleteness, or inconsistency in the information provided by
reporters [2, 36]. Well-structured reports that clearly articulate
observed behavior (OB), expected behavior (EB), and steps to repro-
duce (S2Rs) minimize ambiguity and enable developers to resolve
issues without much discussion & clarification [67].

Challenges in bug reporting persist due to factors such as varying
reporter experience and difficulty in providing essential details like
reproduction steps and expected outcomes [14, 32, 47, 66]. Adding
to this problem, the lack of tool support during report creation
further undermines accuracy [18, 33]. To address these challenges
researchers have explored improving bug report quality by detect-
ing weak descriptions [58]. Some studies check if a report includes
key details like observed behavior, expected behavior, and steps
to reproduce the issue [12, 13] using Natural Language Processing
(NLP) based approaches. Others provide an overall quality assess-
ment of the bug report and offer general suggestions for improve-
ment [58, 76]. Advancements in NLP have led to the development
of large language models (LLMs), which are transformer-based
neural networks capable of predicting the next token based on the
preceding context [57]. These models comprehend context and ex-
ecute assigned tasks through prompts. A similar architecture has
been employed by Bo et al. [5] to generate missing information in
bug reports using ChatGPT. However, ChatGPT has been found to
generate incorrect information [46, 62] and faces limitations due to
data privacy concerns [8] in Software Engineering.

Hence, in this study our aim is to provide an approach to
transforming unstructured bug reports into structured bug reports
according to standardized template formats while also highlighting
missing pieces of information to the reporter before submission of
the bug report using open source large language models locally.
Our research contributions are as follows:

e We provide empirical evidence to show that the instruction
fine-tuned LLMs perform close to state-of-the-art (SOTA)
model, ChatGPT-40 (hereafter referred to as ChatGPT) in
generating high-quality bug reports based on measures such
as SBERT, ROUGE-1, and CTQRS scores.


https://orcid.org/0009-0008-0302-6130
https://orcid.org/0000-0001-7519-3503
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

e To the best of our knowledge, we are the first to demon-
strate how LLM models can transform the reporter (natural-
language-based) summary into a structured bug report as
per the bug template format. This contribution is particularly
significant as bug report quality directly impacts all other re-
search domains, such as bug triage, assignments, duplication
detection and prioritization.

e We show evidence for the effectiveness of Cross Platform
learning (LLMs trained on bug reports from larger projects
are used to generate bug reports for smaller projects). As
such, our results show that instruction fine-tuned models can
generalize well and perform significantly better for projects
without training data.

e As a contribution to open science, we make our complete
dataset and source code public for researchers to replicate
our study and utilize the dataset for other explorations.!

2 NEED FOR THIS STUDY

This section presents a motivating example to illustrate our ap-
proach and compares it with existing methods for improving bug
report quality. We investigate how instruction fine-tuned LLMs
perform against state-of-the-art models like ChatGPT in generating
structured bug reports, their effectiveness in generalizing across
different software projects, and their ability to identify missing
information while mapping summaries to structured components.
Our evaluation, based on instruction fine-tuning, uses both qualita-
tive and quantitative metrics, as shown in Table 1.

Motivating example: Figure 1 presents a sample bug report from
Bugzilla, which lacks explicitly stated steps to reproduce the issue.
As aresult, the developer had to request clarification, leading to a
delay in resolving the bug, which was ultimately fixed only after
the reporter provided clear reproduction steps two months later. In
contrast, Figure 2 illustrates a well-structured bug report, similar
report was automatically triaged and resolved within five days,
requiring minimal discussion or clarification with the reporter.

Papers Model Metrics Adaptation
GIRT[51] Open Source | Quantitative | Fine-tuning
ChatBR [5] ChatGPT Quantitative Few-Shot
BugBlitz [71] | Open Source Quantitative Fine-tuning
Qualitative & | .. .
Our Study Open Source Quantitative Fine-tuning

Table 1: Comparison of prior work with our approach in
terms of model type, evaluation metrics employed, and adap-
tation techniques applied.

3 PRELIMINARIES

In this section, we describe the instruction fine-tuning of LLMs, the
specific LLM used in our study, and the evaluation metrics CTQRS
and related concepts.

Instruction fine-tuning: Instruction fine-tuning trains a lan-
guage model to follow specific instructions by learning from ex-
amples [16]. For instance, we provide the model with pairs of bug
report summaries and well-written bug reports. By learning from

!https://github.com/GindeLab/Ease_2025_AI_model

Jagrit Acharya and Gouri Ginde

Sample unstructured (lacking standard format) bug report

Bug Id: 1805934

User Agent: Mozilla/5.0 (X11; Linux x86_64; rv:108.0)
Gecko/20100101 Firefox/108.0

Steps to reproduce:

For a few months now, I've been suffering an intermittent
problem: every now and again, all drop-down controls in
Firefox would break. Menus would no longer work, drop-
down selects on web pages would fail, extension menus
would fail, and the hamburger menu would fail. The visible
behavior is that the drop-down is drawn but then immedi-
ately erased as if I had clicked elsewhere in the window.
The only fix for the problem is to restart Firefox.
Recently, I realized something: every time I restarted to fix
the issue, Firefox would bring up the dialog saying it was
installing the latest update. And I never get a dialog to tell
me that an update is available.

So what seems to be happening is: every time Firefox de-
tects an available update, something breaks and all menus
and drop-downs stop working.

Today was even worse: restarting didn’t show the updating
dialog, and as soon as I went to any web page, all the drop-
downs broke again. So I wondered if I was wrong about
the cause... but I cleared all local data (cache, cookies, the
lot) and restarted one more time — and suddenly I got the
updating dialog, and now drop-downs work again.
Obviously this is absolutely infuriating. I'd like to do any-
thing I can to help you track down and fix the problem.

Figure 1: This is an example of a low-quality bug report, as it
does not follow the defined Bugzilla bug report template.

these examples, the model can automatically convert any new un-
structured report from the reporter into a complete, well-structured
bug report following a bug report template. This differs from generic
fine-tuning, which simply adapts the model to specific data with-
out explicitly teaching it to execute instructions; instruction fine-
tuning makes the model better at understanding and performing
the desired transformation as per the given guidelines [39]. After
fine-tuning with annotated datasets containing instructional data,
language models show an enhanced ability to follow general lan-
guage instructions [29]. This method, known as instruction-tuning,
enhances the controllability of LLMs via natural language com-
mands, thus significantly improving their performance and ability
to generalize across unseen tasks [68, 69].

LLM Models: We conducted supervised fine-tuning using Low-
Rank Adaptation (LoRA) [30] on three top-performing open-source
instruction-tuned language model: unsloth/Mistral-7B-Instruct-vo0.
3 [21], unsloth/Qwen2.5-7B-Instruct [63], and unsloth/Llama-3.2-
3B-Instruct [20]. These models were selected based on their strong
ranking on the Hugging Face Open LLM Leaderboard [4] as of
February 2025 and widespread use in recent studies [6, 27, 31]. They
also vary in size (7B and 3B parameters), allowing us to study how
scale affects performance. We used the Unsloth training framework


https://github.com/GindeLab/Ease_2025_AI_model
unsloth/Mistral-7B-Instruct-v0.3
unsloth/Mistral-7B-Instruct-v0.3
unsloth/Qwen2.5-7B-Instruct
unsloth/Llama-3.2-3B-Instruct
unsloth/Llama-3.2-3B-Instruct

Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation

Sample well-structured bug report

Bug Id: 1501952

Response:

Title: Print Preview Scaling Issue

Steps to Reproduce

1. Open a webpage

2. Go to Settings, then Accessibility

3. Change the scale to 50% or 200%

4. Go to the three-dot menu in the right corner

5. Select Print

Expected Results:

The print preview should show the scaled page.
Actual Results:

The print preview shows the standard unscaled page.
Additional Information:

Software Version: Mozilla/5.0 (OS/2; U; Warp 4.5; en-US;
rv:0.9.9+) Gecko/20020409

Build Number: 2002040916

Figure 2: This is an example of a bug report generated from
a fine-tuned Mistral 7B model, based on the unstructured
report

[65] for efficient fine-tuning, as it significantly reduces VRAM usage
and speeds up training. For comparison, we also used Llama 3 [17]
for generating unstructured bug reports and ChatGPT [52] for few-
shot learning tasks.

CTQRS: CTQRS (Crowdsourced Test Report Quality Score), de-
veloped by Zhang et al. [74], is a bug-report quality assessment
framework that systematically scores bug reports by combining
morphological, relational, and analytical indicators through depen-
dency parsing. We re-implemented all the 13 rules defined by the
authors to determine the score of the bug reports using python.

4 RESEARCH QUESTIONS

We aims to evaluate the efficacy of instruction-fine-tuned large
language models (LLMs) in generating structured, high-quality bug
reports compared to general-purpose models like ChatGPT, assess
their cross-project generalizability when applied to diverse open
source software projects, and analyze their ability to identify miss-
ing information from user-provided bug reports while accurately
mapping details to standardized bug report components.

RQ1: How do fine-tuned LLM models perform compared to
the GPT model in generating bug reports?
Rationale: ChatGPT models which are trained on a large
corpus need little to no prior knowledge of the task in hand.
Thus, through this RQ, we evaluate the effectiveness of
instruction fine-tuned models against a widely used GPT
model in SE research. This comparison helps determine if
specialized fine-tuning provides any significant advantages
over general-purpose models in generating structured, high-
quality bug reports.

EASE 2025, 17-20 June, 2025, Istanbul, Tirkiye

RQ2: How effective is cross-project prediction in generat-

ing structured bug reports across different software
projects?
Rationale: Cross-project prediction enables models trained
on bug reports from one project to be applied to different
projects, assessing their generalizability. Evaluating a fine-
tuned model trained on larger projects will help determine
if learned patterns can effectively transfer across different
software projects.

RQ3: How effective is the fine-tuned LLM in identifying

missing information from summaries and mapping
unstructured report information to structured bug re-
port components?
Rationale: Evaluating the fine-tuned LLM’s effectiveness in
identifying missing information mapping accuracy ensures
the generated reports capture all details from the unstruc-
tured report, correctly identifies the missing information
and maps them onto the respective component of bug re-
port. It helps identify the bug report components where the
LLM demonstrates the strongest and weakest effectiveness
in mapping and detecting missing information.

5 METHODOLOGY

In this section, we discuss the dataset, preprocessing steps, data
generation, prompt design, model fine-tuning, implementation de-
tails, and evaluation metrics used in our study (as shown in Figure
3).

Dataset and Pre-Processing: We mined a dataset comprising
the recent 15,000 fixed bug reports from Bugzilla, an online bug
tracking system, that were “fixed" and “closed", (as considered in
the previous work [60]). The dataset was gathered using Bugzilla
API over multiple iterations. First, relevant bug reports’ metadata
was gathered utilizing the “Get All Data" API call. Then, using
the “Get All Comments" APIs, all the details regarding bug reports
were gathered (Step @). The dataset includes fields such as Bug ID,
Comment ID, Comment, Priority, Severity, Status etc. Our primary
focus was the Comment field, as it contained the key bug report
details required for fine-tuning.

Not all bug reports contained the necessary information outlined
in the Bugzilla bug report guidelines [48], which advises reporters
to include steps to reproduce (S2Rs), actual results (AR), expected
results (ER), and any additional relevant information in their bug re-
port. Thus, to curate the high-quality training dataset,firstly, we em-
ployed regular expressions to filter the bugs whose bug reports had
descriptions, S2Rs, EB, AB, and additional information, as shown
in (Step @). Secondly, bug reports containing stack traces or code
snippets were similarly excluded. This decision was motivated by
the potential for these elements to introduce noise and complexity
[74], thereby negatively impacting the fine-tuning process of our
model. Afterwards filtered bug reports with a CTQRS score greater
than 14 as they are considered good by Zheng et al. [74] (Step ©).
After these filtrations, we had 3,966 Bugs with all the required infor-
mation (Step @), out of which 200 reports were manually reviewed
to check if they were of the desired quality.

Synthetic (pseudo-ground truth) data generation: Recent stud-
ies have successfully utilized LLMs to generate factually consistent



EASE 2025, 17-20 June, 2025, Istanbul, Turkiye

(¥ Bugzilla

Jagrit Acharya and Gouri Ginde

15,000 Bug reports that with Closed or Fixed status

Checking Bug reports with

Steps to reproduce (SR), Expected Behaviour (EB),
& Actual Behaviour (AB) information

Data pre-processing

Pre-Processing

| (removing code blocks, stack traces, CTQRS>=14) |

(3966 Bug Repurt)

SBERT,

§

anual Review

S ————

Bug report and summary pairs split into train and test sets

I

e » - RQ2 (Cross Project J RQ3 (Mapping & l
_ — PR , __ Validation) v ______ Missing)
Fine-tuned \ - .
ChatGPT 40 4 Fine-tun; Fine-tuned )
Mistral-7 Spsto
stra Zero Shot } (Uama3238) Llama 3.2 38 repoduce | |
| I
Llama3.23B Few Shot | Qwen2578) —— o | ActuatBehaviour| |
Qwen 2578 | - i
‘ bpected | |

____r____

[ P -

!
CTRQS (Dependency Parsing Rules) )

!

[ Accurary F1 ROUGE

spery | Manual
Review

Figure 3: Architecture for Generating High-Quality Bug Reports from Unstructured Bug Reports Using Fine-Tuned Large

Language Models

Listing 1: Llama 3 prompt example for generating unstruc-
tured bug report

Please rewrite the following bug report in a
natural , conversational tone,

as if you're explaining it to someone
casually . Keep the essence of the report

intact , but restructure it in a way that
sounds like something an average

person would write, while still using the
original wording from the report as

much as possible. Focus on maintaining the
original details and key points

without changing much. Provide only the one
rewritten paragraph with everything,

no additional explanation.

Bug report: {text}

summaries [61] and generate data in the domain of healthcare [23].
Taking inspiration from these studies, we first conducted multiple
experiments with different keywords and we got best results when
we requested with please keyword and final evaluations to design

the prompt as shown in Figure 1 (to generate an unstructured from
a well-structured bug report). Further, utilizing this prompt with
the state-of-the-art Llama3 model [17], we generated summaries
for all 3,966 well-structured bug reports in our training set. To
ensure the generated reports were closely aligned with the orig-
inal reports, we manually verified 200 reports computed SBERT
[56] and cosine similarity [40] scores as shown in step @ of Figure
3. Each unstructured report was generated three times, and only
those with an SBERT similarity exceeding 85% and a cosine simi-
larity above 80% were retained. The final dataset comprised 3,903
well-structured bug reports paired with their summaries, serving
as synthetic pseudo-ground truth for instruction fine-tuning tasks.
Data Splitting: Step @ in Figure 3 illustrates the data splitting pro-
cess, where the data was randomized and then split into training,
testing and validation sets, where training was 80% of the data, com-
prising 3,122 rows, testing 10% with 391 rows, and the remaining
10% was validation with 390 rows. We finetuned our model using 4
cross-validation.

Prompt Design: A prompt [43] serves as a set of instructions that
directs LLMs to generate a specific desired output [3]. The effective-
ness of an LLM’s performance on the same task can vary depending
on the prompt used [38], making it essential to craft precise prompts.
In our approach, we employ a single-round dialogue interaction to



Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation

Listing 2: Alpaca prompt template used to fine-tune open-
source LLMs.

alpaca_prompt You are a senior software
engineer specialized in generating
detailed bug reports.

### Instruction:

Please create a bug report that includes the
following sections:

1. Steps to Reproduce (S2R): Detailed steps
to replicate the issue.

2. Expected Result (ER): What you expected
to happen.

3. Actual Result (AR): What actually
happened.

4. Additional Information: Include relevant
details such as software version, build
number, environment, etc.

If any of these sections are missing from
the provided report, explicitly notify
the user which information is missing.

### Input:
{unstructured_report}

### Response:
{Bug_report}

formulate prompts, utilizing the standard Alpaca-LoRA template
[64] as shown in Figure 2. Additionally, we adopt a strategy similar
to that used by Bo et al. [5] to create an effective prompt tem-
plate for fine-tuning:(1) providing important task-related context
as much as possible; (2) assigning LLMs a specified role for our
task (Senior Software Engineer); (3) using separators in the prompt
to indicate different parts of the input; (4) formatting the LLM’s
output in a standardized JSON structure for better analysis.; and
(5) ensuring the prompt is both concise and accurate to fit within
the LLM’s input token limitations. The prompts have been struc-
tured using the standard Alpaca-LoRA template [64] meticulously
encoded through the model’s tokenizer.This includes adding the
<|begin_of_text|> token (equivalent to the BOS token) and the
<|eot_id|> token (which signifies the end of the message in turn).
All the parameters used for this step are reported in the example of
fine-tuning using Unsloth and the TRL SFT Trainer [19] available
on our GitHub repository.?

Instruction fine-tuning: We used Parameter Efficient Fine-Tuning
(PEFT), which doesn’t fine-tune the entire model but modifies sev-
eral parameters to adapt the models for different applications [45].
This approach helps reduce the substantial expenses linked to full-
fine-tuning and ensures that fine-tuning is feasible even with con-
strained storage and processing power. Low-rank adaptation (LoRA)
[30], a prominent PEFT technique, reduces trainable parameters

Zhttps://github.com/GindeLab/Ease_2025_AI_model

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

by incorporating low-rank trainable matrices within the attention
layers of the Transformer model and freezing the model’s weights.

We have fine-tuned the top three widely used models in the
literature and Huggingface leaderboard: Qwen 2.5-7B, Mistral-7B,
and Llama 3.2B [4, 6, 27, 31]. To improve efficiency and reduce
resource consumption, we adopt the Unsloth framework to opti-
mize the Low-Rank Adaptation (LoRA) method for fine-tuning the
models, setting the rank to 16. We specifically target LoORA modules
such as "q_proj’, ’k_proj’, ’o_proj’, ’v_proj’, *down_proj’,
’gate_proj’, and ’up_proj’.

Following standard fine-tuning hyperparameters, we train the
Mistral-7B and Qwen-2.5 B model for 3 epochs with a learning
rate of 2e-4 and a batch size of 8 examples. We also fine-tuned the
Llama-3.2 3B models in the subsequent analysis. For these models,
we conducted training for 3 epochs with a learning rate of 3e-3 and
a batch size of 8 samples.

The number of learning rate, LORA rank and epochs were de-
termined based on experimental observations; we noticed that the
model’s performance on the validation set plateaued after 3 epochs,
indicating that additional training did not yield significant improve-
ments and a 4-Cross validation was applied.

Implementation Details The hardware configuration used for
fine-tuning was RTX 4090 GPU, with 32 GB of RAM. The models
were fine-tuned using the Unsloth framework [65].

Evaluation metrics: As illustrated in @, all models were evaluated
using established metrics widely employed in similar studies [10,
42, 53, 75]: specifically, ROUGE-1 [41], SBERT [56] and Cosine
Similarity [40]. along with Accuracy and F1 Score.

Although ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation) is a widely used metric for summarization tasks, it is appli-
cable to evaluating paraphrases. ROUGE-1 measures recall through
matched unigrams, and we employ this variant in our assessments.

We implemented the bug report quality metrics score proposed
by Zhang et al. [74], which evaluates reports based on Atomicity,
Conciseness, Completeness, Understandability, and Reproducibility
using dependency parsing.

For RQ1 O, we compared the quality of bug reports generated
by fine-tuned models with those from ChatGPT. For RQ2 @,we
assessed the generalization capability of the fine-tuned models. For
RQ30, we evaluated the accuracy of the fine-tuned models for
mappings of unstructured bug reports to high-quality bug reports
and testing model’s missing information identification.

6 RESULTS

We evaluated our fine-tuned models using CTQRS, ROUGE-1, and
SBERT by passing unstructured test reports through the model
to generate structured reports. The CTQRS score measures the
quality of a bug report out of 17, based on the rules discussed in
Section 3. As shown in Figure 4, the Qwen 2.5 model achieved an
average score of approximately 77% on the test dataset, meaning
the generated reports received an average of 13 out of 17 points.
The ROUGE score is calculated by comparing unigrams from the
generated reports with the actual ground truth to assess whether the
model produces high-quality reports. SBERT is used to measure the
semantic similarity between the model-generated reports and the


https://github.com/GindeLab/Ease_2025_AI_model

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

- 7a%! 7% 75\:?’ : o 72%
61l Q 63% a § i “0‘5 64% 64%
= ' § ! %053 5%
o8 i § 047 | 1 %i §
|\ | = B\2
N\ | 1 BN\E
i\ I N BN
AN : N BN
i\ ! N BN
i\ : N1 N
N : N 8 Y
NE NE NEN ; N 8§
Qwen2.5 Mistral Llama3.25 0 Shot 3 Shot EQwen2.5 Mistral Llama3.2
Fine-tuned (FT) models i ChatGPT 40 model ; FT models Cross Project

Figure 4: RQ1 and RQ2: Comparing the performance of
fine-tuned models with base models and ChatGPT 40 on
test dataset

ground truth, showing how closely the generated content matches
the actual reports.

6.1 Answering RQ1: Fine-tuned models vs.
ChatGPT 4o

As shown in the Figure 4 the fine-tuned Qwen2.5 model demon-
strates superior performance across all metrics compared to other
fine-tuned models. Specifically, the fine-tuned Qwen model achieved
a CTQRS score of 77%, marking a significant improvement of 14%
over its llama model’s score of 63% and improvement of 5% as com-
pared to ChatGPT. This enhancement trend is consistent across
SBERT and ROUGE-1 scores, where the fine-tuned Qwen model
outperforms all other fine-tuned models.

A key factor contributing to this improvement is Qwen’s imple-
mentation of the Grouped-Query Attention (GQA) mechanism. This
advanced attention mechanism provides a notable improvement
over the standard attention mechanisms employed by similarly
sized models, such as Mistral. Additionally, the fine-tuned Qwen
model demonstrates a remarkable capability in generating high-
quality bug reports from unstructured reports, surpassing lower-
parameter models, performing close to SOTA model ChatGPT in
post-fine-tuning performance [55].

RQ1: Comparing Fine Tune and ChatGPT shows fine-tuned models
Qwen and Mistral models comparable to ChatGPT, achieving
CTQRS scores of 77% and 71%, respectively, compared to 75% for
ChatGPT. Additionally, both fine-tuned models surpass ChatGPT
in ROUGE Score, with Qwen and Mistral attaining scores of 0.64
and 0.62, respectively, against 0.44 for ChatGPT.

6.2 Answering RQ2: Generalizability of
Fine-tuned models

We manually curated a dataset of 300 high-quality reports from the
publicly available dataset shared by Song et al. [59]. These reports
were processed through our pipeline, following the methodology
outlined in Section 5, and evaluated using the same approach as
RQL1.

Our results, presented in Figure 4, indicate that fine-tuned Qwen
performed comparably to the ChatGPT model achieving 70% CTQRS

Jagrit Acharya and Gouri Ginde

Missing info Accuracy F1
Models S2R | AB | EB S2R AB | EB
Qwen25 | 74% 45% 47% 76% 45% 44%
Mistral 72% 49% 48% 73% 47% 46%
Lama32 | 68% [ 52% =  51% 69% 53% 52%

Mapping ROUGE-1 METEOR
Qwen25 | 0.52 072 07 0.49 0.69 0.68
Mistral 0.45 0.7 0.69 0.41 0.66 0.65

Llama 3.2 0.39 0.56 0.55 0.37 0.55 0.53
M Higher (Good) )

( Lower (Bad) Medium

Figure 5: RQ3 — Heat-map. Upper part (“Missing info”):
shows how accurately the model can flag missing fields
(higher = better). Bottom part (“Mapping”): shows how
well the model maps content from user text to structured
report fields (higher = better).

score while ChatGPT achieved 73%. These findings highlight the
effectiveness of fine-tuning for specific tasks, demonstrating that
task-specific fine-tuned models can achieve similar performance to
state-of-the-art (SOTA) models at a lower compute cost.

Additionally, we observed that ChatGPT’s verbose text gener-
ation negatively impacted the overall evaluation score. Further-
more, three-shot prompting with ChatGPT outperformed zero-shot
prompting, suggesting that providing more examples in the prompt
improves evaluation scores. Further supporting this trend, Pham et
al. [54] emphasized that while ChatGPT can be expensive to deploy
for specific natural language generation tasks, fine-tuning smaller
models on high-quality, in-domain datasets can lead to superior
performance.

RQ2: Comparing fine-tuned models on other OSS projects, reveals
that the fine-tuned Qwen model achieved a robust 70% CTQRS
score, followed by Mistral with 64%. Significantly, this outperforms
Llama3.2’s score of 55% in CTQRS. These outcome emphasizes
that the performance benefits observed with fine-tuned models
are not limited to a single dataset. Instead, it indicates a valuable
degree of generalizability, suggesting that fine-tuning provides
a broadly effective strategy for enhancing model performance
across diverse datasets.

6.3 Answering RQ3: Mapping and Missing
information Detection

To determine the missing information score, we systematically
masked different sections of the unstructured reports in the test
dataset, including Steps to Reproduce, Actual Behavior, and Ex-
pected Behavior. This approach allowed us to evaluate whether the
model could accurately identify if the report miss any information.

As shown in Figure 5, the model struggled to detect Actual Be-
havior and Expected Behavior in approximately 45-50% of cases.
Instead, it inferred the missing details based on the available con-
text.However, the Steps to Reproduce section was correctly identi-
fied in over 70% of cases for the Qwen and Mistral models.

To evaluate the Mapping Score, we compared the JSON output
of the model for each section against the corresponding section
in the actual report. As illustrated in Figure 5, Actual Behavior



Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation

and Expected Behavior and Actual Behavior were mapped more
accurately, achieving a ROUGE score of 0.72 for the Qwen 2.5
model. This higher scores is likely due to the shorter length of these
sections. In contrast, the Steps to Reproduce section, being more
detailed and lengthy, had a lower ROUGE and METEOR score of
0.52 & 0.49.

RQ3: The fine-tuned Llama3.2 model demonstrated a slight im-
provement over other fine-tuned models in identifying missing
information, particularly with respect to Actual Results and Ex-
pected Results. Our manual analysis revealed that the Qwen and
Mistral models tend to generate missing information by inferring
from the available context rather than explicitly flagging it as
missing to the user. We saw model-frequently generated content
for Actual Behavior opposite of the original information provided
in Expected Behavior and vice-versa. However, it accurately high-
lighted when the ’Steps to Reproduce’ section was missing for the
majority of the samples.

The mapping of unstructured reports to structured formats was
performed efficiently by the Qwen and Mistral models. However,
we observed a decline in performance, with ROUGE scores drop-
ping from 0.72 for mapping Actual Behavior to 0.52 for Steps to
Reproduce. Manual analysis indicated that this decrease was re-
lated to the length and details in the "Steps to Reproduce” section.
The models exhibited a tendency to introduce additional informa-
tion in the Steps to reproduce section, which further contributed
to the reduced ROUGE and METEOR scores.

7 DISCUSSION

Our analysis demonstrates that utilizing small language models can
achieve performance comparable to state-of-the-art (SOTA) models
such as ChatGPT. In addition to their competitive performance,
these open-source models offer several advantages, including re-
duced computational requirements, enhanced scalability, and im-
proved data privacy by mitigating concerns related to proprietary
data usage.

In our study, we have used on the unstructured reports gen-
erated (pseudo-ground truth data) using Llama3 model. Llama3
model because of its exceptional performance, open-source nature,
transparency, and scalability, which allow us to access, modify, and
understand the underlying model architecture and training pro-
cesses, making it popular among researchers. Due to the lack or
absence of a dataset large enough for instruction fine-tuning LLMs,
Llama3 provides a valuable alternative for our study.

Our approach demonstrated that LLMs can adapt to various
projects and repositories without extensive retraining. This makes
our fine-tuned model a valuable tool for different open-source
projects, enhancing collaboration and efficiency in software de-
velopment. The ability of LLMs to understand and generate natural
language makes them particularly suited for tasks like bug report
generation, where clear and precise communication is essential.

Our LLM models, fine-tuned on the pseudo-ground truth dataset
successfully generated bug reports in the required format for corre-
sponding unstructured report. Additionally, the model successfully
identified and highlighted any missing information according to the
bug report template. One such example is shown in Figure 6. This

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

ability to generate and evaluate bug reports highlights the utility
of LLMs in streamlining the bug-reporting process. The novelty
of our approach lies in leveraging LLMs to create bug reports that
adhere to bug report templates automatically and ensure they meet
specific formatting and informational standards.

8 THREATS TO VALIDITY

In this section, we list various limitations of our study and explain
how we address them.

Internal threats: Our training dataset consists of 3,162 bug reports,
which might raise concerns related to sample adequacy for analysis
and model fine-tuning. However, Majdik et al. [44] demonstrated
that a training set of around 2,500 samples can significantly enhance
performance in domain-specific tasks like named entity recognition,
summarization, and text generation.

Construct threats: The eports could introduce biases or incon-
sistencies in the model’s outputs. If the prompts are not carefully
crafted to align with the desired output format or guide the model
to generate unexpected responses, this could skew the results. Large
Language Models like Llama 3 can sometimes hallucinate or pro-
duce incorrect unstructured reports, which may impact the accuracy
of bug reports and influence our results. Additionally, these models
are highly dependent on the prompts given to them; slight changes
in the input can lead to significantly different outputs. This sensitiv-
ity introduces variability and potential bias into the data generation
process, affecting the reliability of our conclusions. We mitigate
this threat by carefully designing our prompts using the Alpaca-
LoRA template [64] and keeping them consistent throughout the
fine-tuning process.

Furthermore, LLMs are prone to hallucination, generating plausible-
sounding but factually incorrect or unsupported details—especially
when inferring missing sections. In our manual review, we observed
instances where the model filled in fields (e.g., actual vs. expected
behavior) with contextually plausible yet inaccurate content. Future
work will incorporate human validation steps and automatic con-
sistency checks to detect and filter out hallucinated information. To
mitigate the risk of data leakage, we mined the dataset of recent bug
reports from bugzilla from November 2024, ensuring that the LLMs
had not been exposed to similar data during their pre-training.
While computing evaluation measures, external variables such as
differences in the length of the bug report generated can lead to
unfair comparisons in n-gram overlap metrics, as models produc-
ing lengthier or detailed reports may provide helpful information
that does not align with well-structured bug reports, thereby low-
ering their scores. We tried to mitigate this issue by introducing
additional grading metrics i.e SBERT and CTQRS. Furthermore,
the quality of data preparation and reference unstructured reports
(pseudo-ground truth data) has an impact on the overall results.

External threats: The models, fine-tuned specifically for bug
reports belonging to the Mozilla family of projects and bug report
guidelines, thus, may not perform as effectively or as relevant in
other organizational contexts or with different types of reports,
limiting their broader applicability until they are fine-tuned per
the organization’s guidelines. However, generic testing on samples
sourced from [50] showed encouraging results, thus mitigating this
threat to a large extent.



EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

Input

Jagrit Acharya and Gouri Ginde

Output: Bug report as per bug report guidelines at Mozilla

Title: Issue with loading URLSs containing query parameters using "Open loaded scripts” feature

Summary:

Can'tuse "open loaded scripts" to
load a URL with query params
When load one with "Open loaded
scripts', the query parameter is
stripped.

That normalize code should only be
executed if the source could not be
found - otherwise source should not
be null and the rawSource should
be passed to the adapter.

Instruction

Oﬁ

e .
fine-tuned LLM Steps to Hepl{)du:}e (S2R)**: ; . ! Content arranged
1. Load the application where the "Open loaded scripts” feature is available. as per template

2. Navigate to a script that has been previously loaded and saved.

3. Attempt to reload the script by using the "Open loaded scripts” feature.
4. Provide a URL with query parameters in the input field (for example:

" https://example.com?param1=value1&param2=value2’).

**Expected Result (ER)**: The script should be reloaded from the provided URL, preservip§ any query
parameters.

**Actual Result (AR)**: The query parameters are stripped from the URL when attempting to reload the
script using "Open loaded scripts" feature.

**Additional Information**:
- Software Version: [version number]
- Build Number: [build number]

Missing information

= [
- Browser and OS: [specify browser name and operating system used during testing]

t/production/test]

Figure 6: Sample output from our proposed solution approach: Content gets automatically organized as per the template, and
missing information is also displayed for further editing for bug reporter

Construct threats: The evaluation metrics ROUGE-1, CTQRS
and METEOR emphasize structural or lexical overlap and can un-
derestimate semantic quality for example, penalizing a perfectly
clear paraphrase that uses different wording. To address this, we
plan to integrate human-judged evaluations and explore specialized
metrics that better capture developer-perceived clarity, usefulness,
and actionability of bug reports in future work. Incorporating hu-
man evaluations or developing specialized metrics tailored to bug
report generation could offer a more accurate assessment, which
will be part of our future work.

9 RELATED WORK

We discuss related work with respect bug report quality and in-
struction fine-tuning of LLMs as follows.

Bug Report Management (BRM): Bug report management
has evolved through studies focusing on quality assessment and
automation of software engineering tasks. Bettenburg et al. [76]
were the first who explore this issue and analyzed the summary,
steps to duplicate, and test cases in the bug report using traditional
ML techniques to focus on the quality aspects of bug reports. Zanetti
et al. [73] further checked for duplicate images to ensure the quality
of the description text and developed methods to assess report
validity. Chaparro et al. [11] explored quality assessment of S2Rs
using grammar parsing, neural sequence labelling, and matching of
S2Rs to graph-based execution models of the Android application

Since the advancement in NLP, bug report Summarization has
been explored widely. Kou et al. [37] used three sentence signifi-
cance factors, i.e. believability, sentence-to-sentence cohesion, and
topic association, to summarize the bug report. Later, Xiang and
Shao [70] proposed SumLLaMA, which used LLMs to generate
summaries from bug reports.

The significant manual effort required for bug triage and resolu-
tion [24, 76]. Breu et al. [7] explored the information requirements
in bug reports by studying the questions posed in 600 bug reports
from the Mozilla and Eclipse projects. Additionally, incomplete
or unclear S2Rs pose a big challenge for automated methods to
generate test cases from bug reports [22, 34]. While multiple NLP
approaches have been explored, as discussed above, the use of in-
struction fine-tuning on large language models (LLMs) to improve

bug report quality has not yet been investigated. This represents a
significant research gap, which our study aims to address.

Bug report quality: It has been widely studied, with various
methods proposed to evaluate and improve it [26, 76]. Many of
these methods use heuristic rules and expert insights to identify
key details in bug reports. He et al. [28] introduced a convolutional
neural network (CNN)-based approach to classify bug reports as
valid or invalid using only textual data, such as summaries and
descriptions. Similarly, Chen et al. [15] leveraged natural language
processing and quantifiable indicators to assess bug report quality
automatically. Building on this, we adopted the CTQRS framework
by Zhang et al. [74], which is a bug-report quality assessment frame-
work that systematically scores bug reports by combining morpho-
logical, relational, and analytical indicators through dependency
parsing. Morphological indicators (size, readability, punctuation)
capture structural and linguistic aspects; relational indicators (item-
ization, complete environment info, screenshots) examine whether
each standard field is properly provided; and analytical indicators
(interface elements, user behavior, system defects) tap into deeper
semantics by checking how clearly a report describes UI elements,
actions, and defect details. Each indicator is linked to desirable prop-
erties of atomicity, completeness, conciseness, understandability,
and reproducibility and is assigned rule-based weights to compute
an overall quality score with a maximum score of 17 points.

Instruction fine-tuning: Large pre-trained language models
are capable of executing a diverse variety of generative tasks utiliz-
ing human-annotated instruction data. Notable examples of such
tasks include story writing [72], email drafting, the design of menu
systems [35], poetry composition [9], code generation [49], and the
creation of food recipes [25]. Taking inspiration from these studies,
we explore instruction fine-tuning.

10 CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how instruction fine-tuned LLMs
can automatically convert casual, unstructured bug reports into
well-structured ones that closely follow standard templates. Our
experiments revealed that Qwen 2.5, when fine-tuned, consistently
outperformed other open-source models (Mistral 7B and Llama 3.2)
across multiple evaluation metrics, achieving a CTQRS score of 77%
, ROUGE-1 score of 0.64, and SBERT similarity of 0.82. These results



Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation

underscore its ability to generate structured reports that closely
align with human-written outputs, matching the performance of
proprietary models like ChatGPT (75% CTQRS in 3-shot learning).

A key contribution of this work lies in addressing the challenge
of inconsistent bug report quality, which hinders software main-
tenance efficiency. By leveraging instruction fine-tuning, our ap-
proach ensures that critical components such as Steps to Reproduce,
Expected & Actual Behavior are systematically captured, even when
unstructured input lack explicit details. This capability reduces de-
veloper effort by clarifying ambiguous reports and helps reporters
identify and supply missing information.

Furthermore, our cross-project evaluation highlighted the model’s
robust generalization. When tested on bug reports from diverse
ecosystems (e.g., Eclipse, GCC, Apache), Qwen 2.5 maintained a
CTQRS score of 70% , proving its adaptability to varying project
contexts. Thus showcasing the efficacy of instruction fine-tuning
on open-source models, we provide evidence that such models can
serve as cost-effective, privacy-preserving, scalable alternatives to
proprietary systems like ChatGPT, without compromising much
on performance.

As future work, we plan to enhance the model’s capabilities
by integrating richer data sources (e.g., error snapshots, logs, and
code snippets), exploring advanced fine-tuning techniques such
as QLoRA, expanding support for additional bug-tracking plat-
forms (e.g., GitHub and Jira), and developing a real-time tool that
proactively assists reporters in providing missing details. These
improvements aim to enhance the bug-reporting experience and
minimize developers’ manual effort.

REFERENCES

[1] Iftekhar Ahmed, Nitin Mohan, and Carlos Jensen. 2014. The impact of automatic
crash reports on bug triaging and development in mozilla. In Proceedings of The
International Symposium on Open Collaboration. 1-8.

Jorge Aranda and Gina Venolia. 2009. The secret life of bugs: Going past the

errors and omissions in software repositories. In 2009 IEEE 31st international

conference on software engineering. IEEE, 298-308.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan

Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask,

multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and

interactivity. arXiv preprint arXiv:2302.04023 (2023).

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lam-

bert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.

Open LLM Leaderboard. https://huggingface.co/spaces/open-llmleaderboard/

open_llm_leaderboard. (Accessed: [Insert Date of Access]).

[5] Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei. 2024.
ChatBR: Automated Assessment and Improvement of Bug Report Quality Using
ChatGPT. In 2024 39th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1472-1483.

[6] Z. Bouhoun, A. Allali, R. Cocci, M. A. Assaad, A. Plancon, F. Godest, K. Kon-
dratenko, J. Rodriguez, F. Vitillo, O. Malhomme, L. B. Bechet, and R. Plana. 2024.
Curielm: enhancing large language models for nuclear domain applications. EPJ
Web of Conferences 302 (2024), 17006. doi:10.1051/epjconf/202430217006

[7] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. 2010.
Information needs in bug reports: improving cooperation between developers
and users. In Proceedings of the 2010 ACM conference on Computer supported
cooperative work. 301-310.

[8] Zeju Cai, Jianguo Chen, Wenqing Chen, Weicheng Wang, Xiangyuan Zhu, and

Aijia Ouyang. 2024. F-CodeLLM: A Federated Learning Framework for Adapting

Large Language Models to Practical Software Development. 2024 IEEE/ACM

46th International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion) (2024), 416-417. https://api.semanticscholar.org/CorpusID:

269987655

Tuhin Chakrabarty, Vishakh Padmakumar, and He He. 2022. Help me write a

poem: Instruction tuning as a vehicle for collaborative poetry writing. arXiv

preprint arXiv:2210.13669 (2022).

[2

(3

=

[4

=

=

EASE 2025, 17-20 June, 2025, Istanbul, Tirkiye

[10] Chieh-Ju Chao, Imon Banerjee, Reza Arsanjani, Chadi Ayoub, Andrew Tseng,
Jean-Benoit Delbrouck, Garvan C. Kane, Francisco Lopez-Jimenez, Zachi
Attia, Jae K Oh, Bradley Erickson, Li Fei-Fei, Ehsan Adeli, and Curtis Langlotz.
2024. Evaluating Large Language Models in Echocardiography Reporting:
Opportunities and Challenges. medRxiv (2024). doi:10.1101/2024.01.18.24301503

arXiv:https://www.medrxiv.org/content/early/2024/06/28/2024.01.18.24301503.full. pdf

[11

Oscar Chaparro et al. 2019. Assessing the quality of the steps to reproduce in bug
reports. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New
York, NY, USA, 86-96. doi:10.1145/3338906.3338947

Oscar Chaparro, Carlos Bernal-Cardenas, Jing Lu, Kevin Moran, Andrian Marcus,
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing the
quality of the steps to reproduce in bug reports. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
Association for Computing Machinery, New York, NY, USA, 86-96. doi:10.1145/
3338906.3338947

Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting missing
information in bug descriptions. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 396-407.

Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. 2014. AR-
miner: mining informative reviews for developers from mobile app marketplace.
In Proceedings of the 36th international conference on software engineering. 767—
778.

Xin Chen, He Jiang, Xiaochen Li, Tieke He, and Zhenyu Chen. 2018. Auto-
mated quality assessment for crowdsourced test reports of mobile applications.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 368-379.

[16] Hyung Won Chung et al. 2024. Scaling Instruction-Finetuned Language Models.
Journal of Machine Learning Research 25, 70 (2024), 1-53. http://jmlr.org/papers/
v25/23-0870.html

Abhimanyu Dubey, Abhinav Jauhri, et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783

Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Works for me!
characterizing non-reproducible bug reports. In Proceedings of the 11th working
conference on mining software repositories. 62-71.

Hugging Face. 2023. Supervised Fine-tuning Trainer. https://huggingface.co/
docs/trl/sft_trainer. [Accessed 10-11-2024].

Hugging Face. 2023. unsloth/Llama-3.2-3B-Instruct. https://huggingface.co/
unsloth/Llama-3.2-3B-Instruct. [Accessed 10-11-2024].

Hugging Face. 2023. unsloth/mistral-7b-instruct-v0.3. https://huggingface.co/
unsloth/mistral-7b-instruct-v0.3. [Accessed 10-11-2024].

Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically translating bug reports into test cases for mobile apps. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 141-152.

Zorik Gekhman, Jonathan Herzig, Roee Aharoni, Chen Elkind, and Idan Szpektor.
2023. TrueTeacher: Learning Factual Consistency Evaluation with Large Lan-
guage Models. In Conference on Empirical Methods in Natural Language Processing.
https://api.semanticscholar.org/CorpusID:258762340

Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
2010. Characterizing and predicting which bugs get fixed: an empirical study of
microsoft windows. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1. 495-504.

Helena H. Lee, Ke Shu, Palakorn Achananuparp, Philips Kokoh Prasetyo, Yue Liu,
Ee-Peng Lim, and Lav R Varshney. 2020. RecipeGPT: Generative pre-training
based cooking recipe generation and evaluation system. In Companion Proceedings
of the Web Conference 2020. 181-184.

Rui Hao, Yang Feng, James A Jones, Yuying Li, and Zhenyu Chen. 2019. CTRAS:
Crowdsourced test report aggregation and summarization. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 900-911.
Will Hawkins, Brent Mittelstadt, and Chris Russell. 2024. The effect of fine-tuning
on language model toxicity. arXiv:2410.15821 [cs.AI] https://arxiv.org/abs/2410.
15821

Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, and Yan Lei. 2020. Deep
learning based valid bug reports determination and explanation. In 2020 IEEE
31st International Symposium on Software Reliability Engineering (ISSRE). IEEE,
184-194.

[29] Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. 2023. Unnatural
Instructions: Tuning Language Models with (Almost) No Human Labor. In Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). Association for Computational Linguistics, Toronto, Canada, 14409-14428.
doi:10.18653/v1/2023.acl-long.806

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language

=
N

[13

[14

=
&

(17

[18

[19

™
=

[21

[22

[23

[24

[25

[26

[27

[28

[30


https://huggingface.co/spaces/open-llmleaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llmleaderboard/open_llm_leaderboard
https://doi.org/10.1051/epjconf/202430217006
https://api.semanticscholar.org/CorpusID:269987655
https://api.semanticscholar.org/CorpusID:269987655
https://doi.org/10.1101/2024.01.18.24301503
https://arxiv.org/abs/https://www.medrxiv.org/content/early/2024/06/28/2024.01.18.24301503.full.pdf
https://doi.org/10.1145/3338906.3338947
https://doi.org/10.1145/3338906.3338947
https://doi.org/10.1145/3338906.3338947
http://jmlr.org/papers/v25/23-0870.html
http://jmlr.org/papers/v25/23-0870.html
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://huggingface.co/docs/trl/sft_trainer
https://huggingface.co/docs/trl/sft_trainer
https://huggingface.co/unsloth/Llama-3.2-3B-Instruct
https://huggingface.co/unsloth/Llama-3.2-3B-Instruct
https://huggingface.co/unsloth/mistral-7b-instruct-v0.3
https://huggingface.co/unsloth/mistral-7b-instruct-v0.3
https://api.semanticscholar.org/CorpusID:258762340
https://arxiv.org/abs/2410.15821
https://arxiv.org/abs/2410.15821
https://arxiv.org/abs/2410.15821
https://doi.org/10.18653/v1/2023.acl-long.806

EASE 2025, 17-20 June, 2025, Istanbul, Turkiye

[31]

[32]

[33

[34]

[35]

[36]

[37

[38

[39]

[40

(41

[42]

[43

[44

[45

[46]

[47]

[48

[49]

(50

[51

[52]

[53

[54

Models. CoRR abs/2106.09685 (2021). arXiv:2106.09685 https://arxiv.org/abs/
2106.09685

Ashvini Kumar Jindal, Pawan Kumar Rajpoot, and Ankur Parikh. 2024.
Birbal: An efficient 7B instruct-model fine-tuned with curated datasets.
arXiv:2403.02247 [cs.CL] https://arxiv.org/abs/2403.02247

Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real chal-
lenges in mobile app development. In 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. IEEE, 15-24.

Sascha Just, Rahul Premraj, and Thomas Zimmermann. 2008. Towards the next
generation of bug tracking systems. In 2008 IEEE symposium on visual languages
and human-centric computing. IEEE, 82-85.

Giin Karag6z and Hasan Sozer. 2017. Reproducing failures based on semiformal
failure scenario descriptions. Software Quality Journal 25 (2017), 111-129.
Amir Hossein Kargaran, Nafiseh Nikeghbal, Abbas Heydarnoori, and Hinrich
Schiitze. 2023. MenuCraft: Interactive Menu System Design with Large Language
Models. arXiv preprint arXiv:2303.04496 (2023).

Amy ] Ko and Parmit K Chilana. 2010. How power users help and hinder open
bug reporting. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1665-1674.

Youngji Koh, Sungwon Kang, and Seonah Lee. 2022. Deep Learning-Based Bug
Report Summarization Using Sentence Significance Factors. Applied Sciences 12,
12 (2022). doi:10.3390/app12125854

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199-22213.

Abdullatif Koéksal, Timo Schick, Anna Korhonen, and Hinrich Schiitze.
2024. LongForm: Effective Instruction Tuning with Reverse Instructions.
arXiv:2304.08460 [cs.CL] https://arxiv.org/abs/2304.08460

Baoli Li and Liping Han. 2013. Distance Weighted Cosine Similarity Measure for
Text Classification. In International Conference on Intelligent Data Engineering
and Automated Learning (IDEAL) (Lecture Notes in Computer Science, Vol. 8206).
Springer, 611-618. doi:10.1007/978-3-642-41278-3_74

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74-81. https://aclanthology.org/W04-1013

Can Liu. 2024. CPMI-ChatGLM: Parameter-Efficient Fine-Tuning ChatGLM With
Chinese Patent Medicine Instructions. Scientific Reports (2024). doi:10.1038/
541598-024-56874-w

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM computing surveys 55,
9 (2023), 1-35.

Z.P. Majdik, S. S. Graham, J. C. Shiva Edward, S. N. Rodriguez, M. S. Karnes, J. T.
Jensen, J. B. Barbour, and J. F. Rousseau. 2024. Sample size considerations for fine-
tuning large language models for named entity recognition tasks: methodological
study. Jmir Ai 3 (2024), €52095. doi:10.2196/52095

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak
Paul, and Benjamin Bossan. 2022. PEFT: State-of-the-art Parameter-Efficient
Fine-Tuning methods. https://github.com/huggingface/peft. [Accessed 10-11-
2024].

Nuno Marques, Rodrigo Rocha Silva, and Jorge Bernardino. 2024. Using ChatGPT
in Software Requirements Engineering: A Comprehensive Review. Future Internet
16, 6 (2024). doi:10.3390/f116060180

Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, and Denys Poshy-
vanyk. 2015. Auto-completing bug reports for android applications. In Proceedings
of the 2015 10th joint meeting on foundations of software engineering. 673-686.
Motzilla. [n. d.]. Bug Writing Guidelines. https://bugzilla.mozilla.org/page.cgi?
id=bug-writing.html. [Accessed 10-11-2024].

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui,
Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne
Longpre. 2023. Octopack: Instruction tuning code large language models. arXiv
preprint arXiv:2308.07124 (2023).

Samal Mukhtar, Seonah Lee, and Jueun Heo. 2024. A Multidocument Sum-
marization Technique for Informative Bug Summaries. IEEE Access 12 (2024),
158908-158926. doi:10.1109/ACCESS.2024.3487443

Nafiseh Nikeghbal, Amir Hossein Kargaran, and Abbas Heydarnoori. 2024. GIRT-
Model: Automated Generation of Issue Report Templates. In 21st IEEE/ACM
International Conference on Mining Software Repositories (MSR). IEEE/ACM, Lis-
bon, Portugal. https://doi.org/10.1145/3643991.3644906

OpenAl 2023. ChatGPT (Version 3.5) [Large language model]. https://chat.
openai.com. Accessed: 2024-10-08.

Jacob Parnell, Inigo Jauregi Unanue, and Massimo Piccardi. 2022. A Multi-
Document Coverage Reward for RELAXed Multi-Document Summarization.
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (ACL 2022) (March 2022). doi:10.48550/arxiv.2203.02894

Minh Quang Pham, Sathish Reddy Indurthi, Shamil Chollampatt, and Marco
Turchi. 2023. Select, prompt, filter: Distilling large language models for summa-
rizing conversations. In Proceedings of the 2023 Conference on Empirical Methods

[55]

[56

[57

o
&,

[59

[60

[61

[63

[64

[65

[66

[69

[70

[71

[72]

[73

[74

[75

[76

Jagrit Acharya and Gouri Ginde

in Natural Language Processing. 12257-12265.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen
Yu, and Chengyuan Li. 2025. Qwen2.5 Technical Report. arXiv:2412.15115 [cs.CL]
https://arxiv.org/abs/2412.15115

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 3982-3992. doi:10.18653/v1/D19-1410

Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence? arXiv preprint arXiv:2208.06213 (2022).

Philipp Schuegerl, Juergen Rilling, and Philippe Charland. 2008. Enriching SE
ontologies with bug report quality. In Proc. 4th International Workshop on Semantic
Web Enabled Software Engineering (SWESE’08).

Yang Song and Oscar Chaparro. 2020. Bee: A tool for structuring and analyzing
bug reports. In Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering.
1551-1555.

Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical Softw. Engg.
19, 6 (Dec. 2014), 1665-1705. doi:10.1007/s10664-013-9258-8

Ruixiang Tang, Xiaotian Han, Xiaogian Jiang, and Xia Hu. 2023. Does Synthetic
Data Generation of LLMs Help Clinical Text Mining? ArXiv abs/2303.04360
(2023). https://api.semanticscholar.org/CorpusID:257405132

M. H. Tanzil, J. Y. Khan, and G. Uddin. 2024. Chatgpt incorrectness detection in
software reviews. Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering (2024), 1-12. doi:10.1145/3597503.3639194

Qwen Team. 2024. Qwen2.5: A Party of Foundation Models. https://qwenlm.
github.io/blog/qwen2.5/

Tloen. 2023. Alpaca-lora/templates/. https://github.com/tloen/alpaca-lora/. [Ac-
cessed 10-11-2024].

Unsloth. 2023. Unsloth GitHub. https://github.com/unslothai. [Accessed 10-11-
2024].

Dhaval Vyas, Thomas Fritz, and David Shepherd. 2014. Bug reproduction: A
collaborative practice within software maintenance activities. In COOP 2014-
Proceedings of the 11th International Conference on the Design of Cooperative
Systems, 27-30 May 2014, Nice (France). Springer, 189-207.

Q. Q. Wang, C. Parnin, and A. Orso. 2015. Evaluating the usefulness of ir-based
fault localization techniques. Proceedings of the 2015 International Symposium on
Software Testing and Analysis (2015). doi:10.1145/2771783.2771797

Yizhong Wang et al. 2022. Super-NaturalInstructions: Generalization via Declar-
ative Instructions on 1600+ NLP Tasks. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics, Abu
Dhabi, United Arab Emirates, 5085-5109. doi:10.18653/v1/2022.emnlp- main.340
Yizhong Wang et al. 2023. How Far Can Camels Go? Exploring the
State of Instruction Tuning on Open Resources. In Advances in Neu-
ral Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 74764-74786. https://proceedings.neurips.cc/paper_files/paper/2023/file/
ec6413875e4ab08d7bc4d8e225263398-Paper-Datasets_and_Benchmarks.pdf
Bangmeng Xiang and Yunna Shao. 2024. SumLLaMA: Efficient Contrastive
Representations and Fine-Tuned Adapters for Bug Report Summarization. IEEE
Access 12 (2024), 78562-78571. doi:10.1109/ACCESS.2024.3397326

Yi Yao, Jun Wang, Yabai Hu, Lifeng Wang, Yi Zhou, Jack Chen, Xuming Gai,
Zhenming Wang, and Wenjun Liu. 2024. BugBlitz-AI: An Intelligent QA Assistant.
arXiv:2406.04356 [cs.SE] https://arxiv.org/abs/2406.04356

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. 2022. Wordcraft:
story writing with large language models. In Proceedings of the 27th International
Conference on Intelligent User Interfaces. 841-852.

Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and Frank
Schweitzer. 2013. Categorizing Bugs with Social Networks: A Case Study on
Four Open Source Software Communities. arXiv:1302.6764

Huan Zhang, Yuan Zhao, Shengcheng Yu, and Zhenyu Chen. 2022. Automated
Quality Assessment for Crowdsourced Test Reports Based on Dependency Pars-
ing. In 2022 9th International Conference on Dependable Systems and Their Appli-
cations (DSA). 34—41. doi:10.1109/DSA56465.2022.00014

Ming Zhao, Peter Anderson, Vihan Jain, Su Wang, Alexander Ku, Jason Baldridge,
and Eugene Ie. 2021. On the Evaluation of Vision-and-Language Navigation
Instructions. Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume (April 2021), 1302-1316.
doi:10.48550/arxiv.2101.10504

Thomas Zimmermann, R. Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schréter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE Trans-
actions on Software Engineering 36 (09 2010), 618—643. doi:10.1109/TSE.2010.63


https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2403.02247
https://arxiv.org/abs/2403.02247
https://doi.org/10.3390/app12125854
https://arxiv.org/abs/2304.08460
https://arxiv.org/abs/2304.08460
https://doi.org/10.1007/978-3-642-41278-3_74
https://aclanthology.org/W04-1013
https://doi.org/10.1038/s41598-024-56874-w
https://doi.org/10.1038/s41598-024-56874-w
https://doi.org/10.2196/52095
https://github.com/huggingface/peft
https://doi.org/10.3390/fi16060180
https://bugzilla.mozilla.org/page.cgi?id=bug-writing.html
https://bugzilla.mozilla.org/page.cgi?id=bug-writing.html
https://doi.org/10.1109/ACCESS.2024.3487443
https://doi.org/10.1145/3643991.3644906
https://chat.openai.com
https://chat.openai.com
https://doi.org/10.48550/arxiv.2203.02894
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1007/s10664-013-9258-8
https://api.semanticscholar.org/CorpusID:257405132
https://doi.org/10.1145/3597503.3639194
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://github.com/tloen/alpaca-lora/
https://github.com/unslothai
https://doi.org/10.1145/2771783.2771797
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://proceedings.neurips.cc/paper_files/paper/2023/file/ec6413875e4ab08d7bc4d8e225263398-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ec6413875e4ab08d7bc4d8e225263398-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.1109/ACCESS.2024.3397326
https://arxiv.org/abs/2406.04356
https://arxiv.org/abs/2406.04356
https://arxiv.org/abs/1302.6764
https://doi.org/10.1109/DSA56465.2022.00014
https://doi.org/10.48550/arxiv.2101.10504
https://doi.org/10.1109/TSE.2010.63

	Abstract
	1 Introduction
	2 Need for this Study
	3 Preliminaries
	4 Research Questions
	5 Methodology
	6 Results
	6.1 Answering RQ1: Fine-tuned models vs. ChatGPT 4o
	6.2 Answering RQ2: Generalizability of Fine-tuned models 
	6.3 Answering RQ3: Mapping and Missing information Detection

	7 Discussion
	8 Threats to validity
	9 Related work
	10 Conclusion and Future Work
	References

