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ABSTRACT

Bug reports contain the information developers need to triage and
fix software bugs. However, unclear, incomplete, or ambiguous in-
formation may lead to delays and excessive manual effort spent
on bug triage and resolution. In this paper, we explore whether
Instruction fine-tuned Large Language Models (LLMs) can automat-
ically transform casual, unstructured bug reports into high-quality,
structured bug reports adhering to a standard template. We evalu-
ate three open-source instruction-tuned LLMs (Qwen 2.5, Mistral,
and Llama 3.2) against ChatGPT-40, measuring performance on
established metrics such as CTQRS, ROUGE, METEOR, and SBERT.
Our experiments show that fine-tuned Qwen 2.5 achieves a CTQRS
score of 77%, outperforming both fine-tuned Mistral (71%), Llama
3.2 (63%) and ChatGPT in 3-shot learning (75%). Further analysis
reveals that Llama 3.2 shows higher accuracy of detecting missing
fields particularly Expected Behavior and Actual Behavior, while
Qwen 2.5 demonstrates superior performance in capturing Steps-
to-Reproduce, with an F1 score of 76%. Additional testing of the
models on other popular projects (e.g., Eclipse, GCC) demonstrates
that our approach generalizes well, achieving up to 70% CTQRS in
unseen projects’ bug reports. These findings highlight the poten-
tial of instruction fine-tuning in automating structured bug report
generation, reducing manual effort for developers and streamlining
the software maintenance process.
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1 INTRODUCTION

Bug reports are essential in software maintenance, providing de-
velopers with critical information to identify, triage, and resolve
software defects [76]. A bug report is a record of a software fault
or defect that is created by an end-user or a tester [1]. However,
the effectiveness of bug reports is often hindered by ambiguity,
incompleteness, or inconsistency in the information provided by
reporters [2, 36]. Well-structured reports that clearly articulate
observed behavior (OB), expected behavior (EB), and steps to repro-
duce (S2Rs) minimize ambiguity and enable developers to resolve
issues without much discussion & clarification [67].

Challenges in bug reporting persist due to factors such as varying
reporter experience and difficulty in providing essential details like
reproduction steps and expected outcomes [14, 32, 47, 66]. Adding
to this problem, the lack of tool support during report creation
further undermines accuracy [18, 33]. To address these challenges
researchers have explored improving bug report quality by detect-
ing weak descriptions [58]. Some studies check if a report includes
key details like observed behavior, expected behavior, and steps
to reproduce the issue [12, 13] using Natural Language Processing
(NLP) based approaches. Others provide an overall quality assess-
ment of the bug report and offer general suggestions for improve-
ment [58, 76]. Advancements in NLP have led to the development
of large language models (LLMs), which are transformer-based
neural networks capable of predicting the next token based on the
preceding context [57]. These models comprehend context and ex-
ecute assigned tasks through prompts. A similar architecture has
been employed by Bo et al. [5] to generate missing information in
bug reports using ChatGPT. However, ChatGPT has been found to
generate incorrect information [46, 62] and faces limitations due to
data privacy concerns [8] in Software Engineering.

Hence, in this study our aim is to provide an approach to
transforming unstructured bug reports into structured bug reports
according to standardized template formats while also highlighting
missing pieces of information to the reporter before submission of
the bug report using open source large language models locally.
Our research contributions are as follows:

e We provide empirical evidence to show that the instruction
fine-tuned LLMs perform close to state-of-the-art (SOTA)
model, ChatGPT-40 (hereafter referred to as ChatGPT) in
generating high-quality bug reports based on measures such
as SBERT, ROUGE-1, and CTQRS scores.
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e To the best of our knowledge, we are the first to demon-
strate how LLM models can transform the reporter (natural-
language-based) summary into a structured bug report as
per the bug template format. This contribution is particularly
significant as bug report quality directly impacts all other re-
search domains, such as bug triage, assignments, duplication
detection and prioritization.

e We show evidence for the effectiveness of Cross Platform
learning (LLMs trained on bug reports from larger projects
are used to generate bug reports for smaller projects). As
such, our results show that instruction fine-tuned models can
generalize well and perform significantly better for projects
without training data.

e As a contribution to open science, we make our complete
dataset and source code public for researchers to replicate
our study and utilize the dataset for other explorations.!

2 NEED FOR THIS STUDY

This section presents a motivating example to illustrate our ap-
proach and compares it with existing methods for improving bug
report quality. We investigate how instruction fine-tuned LLMs
perform against state-of-the-art models like ChatGPT in generating
structured bug reports, their effectiveness in generalizing across
different software projects, and their ability to identify missing
information while mapping summaries to structured components.
Our evaluation, based on instruction fine-tuning, uses both qualita-
tive and quantitative metrics, as shown in Table 1.

Motivating example: Figure 1 presents a sample bug report from
Bugzilla, which lacks explicitly stated steps to reproduce the issue.
As aresult, the developer had to request clarification, leading to a
delay in resolving the bug, which was ultimately fixed only after
the reporter provided clear reproduction steps two months later. In
contrast, Figure 2 illustrates a well-structured bug report, similar
report was automatically triaged and resolved within five days,
requiring minimal discussion or clarification with the reporter.

Papers Model Metrics Adaptation
GIRT[51] Open Source | Quantitative | Fine-tuning
ChatBR [5] ChatGPT Quantitative Few-Shot
BugBlitz [71] | Open Source Quantitative Fine-tuning
Qualitative & | .. .
Our Study Open Source Quantitative Fine-tuning

Table 1: Comparison of prior work with our approach in
terms of model type, evaluation metrics employed, and adap-
tation techniques applied.

3 PRELIMINARIES

In this section, we describe the instruction fine-tuning of LLMs, the
specific LLM used in our study, and the evaluation metrics CTQRS
and related concepts.

Instruction fine-tuning: Instruction fine-tuning trains a lan-
guage model to follow specific instructions by learning from ex-
amples [16]. For instance, we provide the model with pairs of bug
report summaries and well-written bug reports. By learning from

!https://github.com/GindeLab/Ease_2025_AI_model
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Sample unstructured (lacking standard format) bug report

Bug Id: 1805934

User Agent: Mozilla/5.0 (X11; Linux x86_64; rv:108.0)
Gecko/20100101 Firefox/108.0

Steps to reproduce:

For a few months now, I've been suffering an intermittent
problem: every now and again, all drop-down controls in
Firefox would break. Menus would no longer work, drop-
down selects on web pages would fail, extension menus
would fail, and the hamburger menu would fail. The visible
behavior is that the drop-down is drawn but then immedi-
ately erased as if I had clicked elsewhere in the window.
The only fix for the problem is to restart Firefox.
Recently, I realized something: every time I restarted to fix
the issue, Firefox would bring up the dialog saying it was
installing the latest update. And I never get a dialog to tell
me that an update is available.

So what seems to be happening is: every time Firefox de-
tects an available update, something breaks and all menus
and drop-downs stop working.

Today was even worse: restarting didn’t show the updating
dialog, and as soon as I went to any web page, all the drop-
downs broke again. So I wondered if I was wrong about
the cause... but I cleared all local data (cache, cookies, the
lot) and restarted one more time — and suddenly I got the
updating dialog, and now drop-downs work again.
Obviously this is absolutely infuriating. I'd like to do any-
thing I can to help you track down and fix the problem.

Figure 1: This is an example of a low-quality bug report, as it
does not follow the defined Bugzilla bug report template.

these examples, the model can automatically convert any new un-
structured report from the reporter into a complete, well-structured
bug report following a bug report template. This differs from generic
fine-tuning, which simply adapts the model to specific data with-
out explicitly teaching it to execute instructions; instruction fine-
tuning makes the model better at understanding and performing
the desired transformation as per the given guidelines [39]. After
fine-tuning with annotated datasets containing instructional data,
language models show an enhanced ability to follow general lan-
guage instructions [29]. This method, known as instruction-tuning,
enhances the controllability of LLMs via natural language com-
mands, thus significantly improving their performance and ability
to generalize across unseen tasks [68, 69].

LLM Models: We conducted supervised fine-tuning using Low-
Rank Adaptation (LoRA) [30] on three top-performing open-source
instruction-tuned language model: unsloth/Mistral-7B-Instruct-vo0.
3 [21], unsloth/Qwen2.5-7B-Instruct [63], and unsloth/Llama-3.2-
3B-Instruct [20]. These models were selected based on their strong
ranking on the Hugging Face Open LLM Leaderboard [4] as of
February 2025 and widespread use in recent studies [6, 27, 31]. They
also vary in size (7B and 3B parameters), allowing us to study how
scale affects performance. We used the Unsloth training framework
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Sample well-structured bug report

Bug Id: 1501952

Response:

Title: Print Preview Scaling Issue

Steps to Reproduce

1. Open a webpage

2. Go to Settings, then Accessibility

3. Change the scale to 50% or 200%

4. Go to the three-dot menu in the right corner

5. Select Print

Expected Results:

The print preview should show the scaled page.
Actual Results:

The print preview shows the standard unscaled page.
Additional Information:

Software Version: Mozilla/5.0 (OS/2; U; Warp 4.5; en-US;
rv:0.9.9+) Gecko/20020409

Build Number: 2002040916

Figure 2: This is an example of a bug report generated from
a fine-tuned Mistral 7B model, based on the unstructured
report

[65] for efficient fine-tuning, as it significantly reduces VRAM usage
and speeds up training. For comparison, we also used Llama 3 [17]
for generating unstructured bug reports and ChatGPT [52] for few-
shot learning tasks.

CTQRS: CTQRS (Crowdsourced Test Report Quality Score), de-
veloped by Zhang et al. [74], is a bug-report quality assessment
framework that systematically scores bug reports by combining
morphological, relational, and analytical indicators through depen-
dency parsing. We re-implemented all the 13 rules defined by the
authors to determine the score of the bug reports using python.

4 RESEARCH QUESTIONS

We aims to evaluate the efficacy of instruction-fine-tuned large
language models (LLMs) in generating structured, high-quality bug
reports compared to general-purpose models like ChatGPT, assess
their cross-project generalizability when applied to diverse open
source software projects, and analyze their ability to identify miss-
ing information from user-provided bug reports while accurately
mapping details to standardized bug report components.

RQ1: How do fine-tuned LLM models perform compared to
the GPT model in generating bug reports?
Rationale: ChatGPT models which are trained on a large
corpus need little to no prior knowledge of the task in hand.
Thus, through this RQ, we evaluate the effectiveness of
instruction fine-tuned models against a widely used GPT
model in SE research. This comparison helps determine if
specialized fine-tuning provides any significant advantages
over general-purpose models in generating structured, high-
quality bug reports.

EASE 2025, 17-20 June, 2025, Istanbul, Tirkiye

RQ2: How effective is cross-project prediction in generat-

ing structured bug reports across different software
projects?
Rationale: Cross-project prediction enables models trained
on bug reports from one project to be applied to different
projects, assessing their generalizability. Evaluating a fine-
tuned model trained on larger projects will help determine
if learned patterns can effectively transfer across different
software projects.

RQ3: How effective is the fine-tuned LLM in identifying

missing information from summaries and mapping
unstructured report information to structured bug re-
port components?
Rationale: Evaluating the fine-tuned LLM’s effectiveness in
identifying missing information mapping accuracy ensures
the generated reports capture all details from the unstruc-
tured report, correctly identifies the missing information
and maps them onto the respective component of bug re-
port. It helps identify the bug report components where the
LLM demonstrates the strongest and weakest effectiveness
in mapping and detecting missing information.

5 METHODOLOGY

In this section, we discuss the dataset, preprocessing steps, data
generation, prompt design, model fine-tuning, implementation de-
tails, and evaluation metrics used in our study (as shown in Figure
3).

Dataset and Pre-Processing: We mined a dataset comprising
the recent 15,000 fixed bug reports from Bugzilla, an online bug
tracking system, that were “fixed" and “closed", (as considered in
the previous work [60]). The dataset was gathered using Bugzilla
API over multiple iterations. First, relevant bug reports’ metadata
was gathered utilizing the “Get All Data" API call. Then, using
the “Get All Comments" APIs, all the details regarding bug reports
were gathered (Step @). The dataset includes fields such as Bug ID,
Comment ID, Comment, Priority, Severity, Status etc. Our primary
focus was the Comment field, as it contained the key bug report
details required for fine-tuning.

Not all bug reports contained the necessary information outlined
in the Bugzilla bug report guidelines [48], which advises reporters
to include steps to reproduce (S2Rs), actual results (AR), expected
results (ER), and any additional relevant information in their bug re-
port. Thus, to curate the high-quality training dataset,firstly, we em-
ployed regular expressions to filter the bugs whose bug reports had
descriptions, S2Rs, EB, AB, and additional information, as shown
in (Step @). Secondly, bug reports containing stack traces or code
snippets were similarly excluded. This decision was motivated by
the potential for these elements to introduce noise and complexity
[74], thereby negatively impacting the fine-tuning process of our
model. Afterwards filtered bug reports with a CTQRS score greater
than 14 as they are considered good by Zheng et al. [74] (Step ©).
After these filtrations, we had 3,966 Bugs with all the required infor-
mation (Step @), out of which 200 reports were manually reviewed
to check if they were of the desired quality.

Synthetic (pseudo-ground truth) data generation: Recent stud-
ies have successfully utilized LLMs to generate factually consistent
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Figure 3: Architecture for Generating High-Quality Bug Reports from Unstructured Bug Reports Using Fine-Tuned Large

Language Models

Listing 1: Llama 3 prompt example for generating unstruc-
tured bug report

Please rewrite the following bug report in a
natural , conversational tone,

as if you're explaining it to someone
casually . Keep the essence of the report

intact , but restructure it in a way that
sounds like something an average

person would write, while still using the
original wording from the report as

much as possible. Focus on maintaining the
original details and key points

without changing much. Provide only the one
rewritten paragraph with everything,

no additional explanation.

Bug report: {text}

summaries [61] and generate data in the domain of healthcare [23].
Taking inspiration from these studies, we first conducted multiple
experiments with different keywords and we got best results when
we requested with please keyword and final evaluations to design

the prompt as shown in Figure 1 (to generate an unstructured from
a well-structured bug report). Further, utilizing this prompt with
the state-of-the-art Llama3 model [17], we generated summaries
for all 3,966 well-structured bug reports in our training set. To
ensure the generated reports were closely aligned with the orig-
inal reports, we manually verified 200 reports computed SBERT
[56] and cosine similarity [40] scores as shown in step @ of Figure
3. Each unstructured report was generated three times, and only
those with an SBERT similarity exceeding 85% and a cosine simi-
larity above 80% were retained. The final dataset comprised 3,903
well-structured bug reports paired with their summaries, serving
as synthetic pseudo-ground truth for instruction fine-tuning tasks.
Data Splitting: Step @ in Figure 3 illustrates the data splitting pro-
cess, where the data was randomized and then split into training,
testing and validation sets, where training was 80% of the data, com-
prising 3,122 rows, testing 10% with 391 rows, and the remaining
10% was validation with 390 rows. We finetuned our model using 4
cross-validation.

Prompt Design: A prompt [43] serves as a set of instructions that
directs LLMs to generate a specific desired output [3]. The effective-
ness of an LLM’s performance on the same task can vary depending
on the prompt used [38], making it essential to craft precise prompts.
In our approach, we employ a single-round dialogue interaction to
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Listing 2: Alpaca prompt template used to fine-tune open-
source LLMs.

alpaca_prompt You are a senior software
engineer specialized in generating
detailed bug reports.

### Instruction:

Please create a bug report that includes the
following sections:

1. Steps to Reproduce (S2R): Detailed steps
to replicate the issue.

2. Expected Result (ER): What you expected
to happen.

3. Actual Result (AR): What actually
happened.

4. Additional Information: Include relevant
details such as software version, build
number, environment, etc.

If any of these sections are missing from
the provided report, explicitly notify
the user which information is missing.

### Input:
{unstructured_report}

### Response:
{Bug_report}

formulate prompts, utilizing the standard Alpaca-LoRA template
[64] as shown in Figure 2. Additionally, we adopt a strategy similar
to that used by Bo et al. [5] to create an effective prompt tem-
plate for fine-tuning:(1) providing important task-related context
as much as possible; (2) assigning LLMs a specified role for our
task (Senior Software Engineer); (3) using separators in the prompt
to indicate different parts of the input; (4) formatting the LLM’s
output in a standardized JSON structure for better analysis.; and
(5) ensuring the prompt is both concise and accurate to fit within
the LLM’s input token limitations. The prompts have been struc-
tured using the standard Alpaca-LoRA template [64] meticulously
encoded through the model’s tokenizer.This includes adding the
<|begin_of_text|> token (equivalent to the BOS token) and the
<|eot_id|> token (which signifies the end of the message in turn).
All the parameters used for this step are reported in the example of
fine-tuning using Unsloth and the TRL SFT Trainer [19] available
on our GitHub repository.?

Instruction fine-tuning: We used Parameter Efficient Fine-Tuning
(PEFT), which doesn’t fine-tune the entire model but modifies sev-
eral parameters to adapt the models for different applications [45].
This approach helps reduce the substantial expenses linked to full-
fine-tuning and ensures that fine-tuning is feasible even with con-
strained storage and processing power. Low-rank adaptation (LoRA)
[30], a prominent PEFT technique, reduces trainable parameters

Zhttps://github.com/GindeLab/Ease_2025_AI_model
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by incorporating low-rank trainable matrices within the attention
layers of the Transformer model and freezing the model’s weights.

We have fine-tuned the top three widely used models in the
literature and Huggingface leaderboard: Qwen 2.5-7B, Mistral-7B,
and Llama 3.2B [4, 6, 27, 31]. To improve efficiency and reduce
resource consumption, we adopt the Unsloth framework to opti-
mize the Low-Rank Adaptation (LoRA) method for fine-tuning the
models, setting the rank to 16. We specifically target LoORA modules
such as "q_proj’, ’k_proj’, ’o_proj’, ’v_proj’, *down_proj’,
’gate_proj’, and ’up_proj’.

Following standard fine-tuning hyperparameters, we train the
Mistral-7B and Qwen-2.5 B model for 3 epochs with a learning
rate of 2e-4 and a batch size of 8 examples. We also fine-tuned the
Llama-3.2 3B models in the subsequent analysis. For these models,
we conducted training for 3 epochs with a learning rate of 3e-3 and
a batch size of 8 samples.

The number of learning rate, LORA rank and epochs were de-
termined based on experimental observations; we noticed that the
model’s performance on the validation set plateaued after 3 epochs,
indicating that additional training did not yield significant improve-
ments and a 4-Cross validation was applied.

Implementation Details The hardware configuration used for
fine-tuning was RTX 4090 GPU, with 32 GB of RAM. The models
were fine-tuned using the Unsloth framework [65].

Evaluation metrics: As illustrated in @, all models were evaluated
using established metrics widely employed in similar studies [10,
42, 53, 75]: specifically, ROUGE-1 [41], SBERT [56] and Cosine
Similarity [40]. along with Accuracy and F1 Score.

Although ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation) is a widely used metric for summarization tasks, it is appli-
cable to evaluating paraphrases. ROUGE-1 measures recall through
matched unigrams, and we employ this variant in our assessments.

We implemented the bug report quality metrics score proposed
by Zhang et al. [74], which evaluates reports based on Atomicity,
Conciseness, Completeness, Understandability, and Reproducibility
using dependency parsing.

For RQ1 O, we compared the quality of bug reports generated
by fine-tuned models with those from ChatGPT. For RQ2 @,we
assessed the generalization capability of the fine-tuned models. For
RQ30, we evaluated the accuracy of the fine-tuned models for
mappings of unstructured bug reports to high-quality bug reports
and testing model’s missing information identification.

6 RESULTS

We evaluated our fine-tuned models using CTQRS, ROUGE-1, and
SBERT by passing unstructured test reports through the model
to generate structured reports. The CTQRS score measures the
quality of a bug report out of 17, based on the rules discussed in
Section 3. As shown in Figure 4, the Qwen 2.5 model achieved an
average score of approximately 77% on the test dataset, meaning
the generated reports received an average of 13 out of 17 points.
The ROUGE score is calculated by comparing unigrams from the
generated reports with the actual ground truth to assess whether the
model produces high-quality reports. SBERT is used to measure the
semantic similarity between the model-generated reports and the
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Figure 4: RQ1 and RQ2: Comparing the performance of
fine-tuned models with base models and ChatGPT 40 on
test dataset

ground truth, showing how closely the generated content matches
the actual reports.

6.1 Answering RQ1: Fine-tuned models vs.
ChatGPT 4o

As shown in the Figure 4 the fine-tuned Qwen2.5 model demon-
strates superior performance across all metrics compared to other
fine-tuned models. Specifically, the fine-tuned Qwen model achieved
a CTQRS score of 77%, marking a significant improvement of 14%
over its llama model’s score of 63% and improvement of 5% as com-
pared to ChatGPT. This enhancement trend is consistent across
SBERT and ROUGE-1 scores, where the fine-tuned Qwen model
outperforms all other fine-tuned models.

A key factor contributing to this improvement is Qwen’s imple-
mentation of the Grouped-Query Attention (GQA) mechanism. This
advanced attention mechanism provides a notable improvement
over the standard attention mechanisms employed by similarly
sized models, such as Mistral. Additionally, the fine-tuned Qwen
model demonstrates a remarkable capability in generating high-
quality bug reports from unstructured reports, surpassing lower-
parameter models, performing close to SOTA model ChatGPT in
post-fine-tuning performance [55].

RQ1: Comparing Fine Tune and ChatGPT shows fine-tuned models
Qwen and Mistral models comparable to ChatGPT, achieving
CTQRS scores of 77% and 71%, respectively, compared to 75% for
ChatGPT. Additionally, both fine-tuned models surpass ChatGPT
in ROUGE Score, with Qwen and Mistral attaining scores of 0.64
and 0.62, respectively, against 0.44 for ChatGPT.

6.2 Answering RQ2: Generalizability of
Fine-tuned models

We manually curated a dataset of 300 high-quality reports from the
publicly available dataset shared by Song et al. [59]. These reports
were processed through our pipeline, following the methodology
outlined in Section 5, and evaluated using the same approach as
RQL1.

Our results, presented in Figure 4, indicate that fine-tuned Qwen
performed comparably to the ChatGPT model achieving 70% CTQRS
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Missing info Accuracy F1
Models S2R | AB | EB S2R AB | EB
Qwen25 | 74% 45% 47% 76% 45% 44%
Mistral 72% 49% 48% 73% 47% 46%
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Figure 5: RQ3 — Heat-map. Upper part (“Missing info”):
shows how accurately the model can flag missing fields
(higher = better). Bottom part (“Mapping”): shows how
well the model maps content from user text to structured
report fields (higher = better).

score while ChatGPT achieved 73%. These findings highlight the
effectiveness of fine-tuning for specific tasks, demonstrating that
task-specific fine-tuned models can achieve similar performance to
state-of-the-art (SOTA) models at a lower compute cost.

Additionally, we observed that ChatGPT’s verbose text gener-
ation negatively impacted the overall evaluation score. Further-
more, three-shot prompting with ChatGPT outperformed zero-shot
prompting, suggesting that providing more examples in the prompt
improves evaluation scores. Further supporting this trend, Pham et
al. [54] emphasized that while ChatGPT can be expensive to deploy
for specific natural language generation tasks, fine-tuning smaller
models on high-quality, in-domain datasets can lead to superior
performance.

RQ2: Comparing fine-tuned models on other OSS projects, reveals
that the fine-tuned Qwen model achieved a robust 70% CTQRS
score, followed by Mistral with 64%. Significantly, this outperforms
Llama3.2’s score of 55% in CTQRS. These outcome emphasizes
that the performance benefits observed with fine-tuned models
are not limited to a single dataset. Instead, it indicates a valuable
degree of generalizability, suggesting that fine-tuning provides
a broadly effective strategy for enhancing model performance
across diverse datasets.

6.3 Answering RQ3: Mapping and Missing
information Detection

To determine the missing information score, we systematically
masked different sections of the unstructured reports in the test
dataset, including Steps to Reproduce, Actual Behavior, and Ex-
pected Behavior. This approach allowed us to evaluate whether the
model could accurately identify if the report miss any information.

As shown in Figure 5, the model struggled to detect Actual Be-
havior and Expected Behavior in approximately 45-50% of cases.
Instead, it inferred the missing details based on the available con-
text.However, the Steps to Reproduce section was correctly identi-
fied in over 70% of cases for the Qwen and Mistral models.

To evaluate the Mapping Score, we compared the JSON output
of the model for each section against the corresponding section
in the actual report. As illustrated in Figure 5, Actual Behavior
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and Expected Behavior and Actual Behavior were mapped more
accurately, achieving a ROUGE score of 0.72 for the Qwen 2.5
model. This higher scores is likely due to the shorter length of these
sections. In contrast, the Steps to Reproduce section, being more
detailed and lengthy, had a lower ROUGE and METEOR score of
0.52 & 0.49.

RQ3: The fine-tuned Llama3.2 model demonstrated a slight im-
provement over other fine-tuned models in identifying missing
information, particularly with respect to Actual Results and Ex-
pected Results. Our manual analysis revealed that the Qwen and
Mistral models tend to generate missing information by inferring
from the available context rather than explicitly flagging it as
missing to the user. We saw model-frequently generated content
for Actual Behavior opposite of the original information provided
in Expected Behavior and vice-versa. However, it accurately high-
lighted when the ’Steps to Reproduce’ section was missing for the
majority of the samples.

The mapping of unstructured reports to structured formats was
performed efficiently by the Qwen and Mistral models. However,
we observed a decline in performance, with ROUGE scores drop-
ping from 0.72 for mapping Actual Behavior to 0.52 for Steps to
Reproduce. Manual analysis indicated that this decrease was re-
lated to the length and details in the "Steps to Reproduce” section.
The models exhibited a tendency to introduce additional informa-
tion in the Steps to reproduce section, which further contributed
to the reduced ROUGE and METEOR scores.

7 DISCUSSION

Our analysis demonstrates that utilizing small language models can
achieve performance comparable to state-of-the-art (SOTA) models
such as ChatGPT. In addition to their competitive performance,
these open-source models offer several advantages, including re-
duced computational requirements, enhanced scalability, and im-
proved data privacy by mitigating concerns related to proprietary
data usage.

In our study, we have used on the unstructured reports gen-
erated (pseudo-ground truth data) using Llama3 model. Llama3
model because of its exceptional performance, open-source nature,
transparency, and scalability, which allow us to access, modify, and
understand the underlying model architecture and training pro-
cesses, making it popular among researchers. Due to the lack or
absence of a dataset large enough for instruction fine-tuning LLMs,
Llama3 provides a valuable alternative for our study.

Our approach demonstrated that LLMs can adapt to various
projects and repositories without extensive retraining. This makes
our fine-tuned model a valuable tool for different open-source
projects, enhancing collaboration and efficiency in software de-
velopment. The ability of LLMs to understand and generate natural
language makes them particularly suited for tasks like bug report
generation, where clear and precise communication is essential.

Our LLM models, fine-tuned on the pseudo-ground truth dataset
successfully generated bug reports in the required format for corre-
sponding unstructured report. Additionally, the model successfully
identified and highlighted any missing information according to the
bug report template. One such example is shown in Figure 6. This
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ability to generate and evaluate bug reports highlights the utility
of LLMs in streamlining the bug-reporting process. The novelty
of our approach lies in leveraging LLMs to create bug reports that
adhere to bug report templates automatically and ensure they meet
specific formatting and informational standards.

8 THREATS TO VALIDITY

In this section, we list various limitations of our study and explain
how we address them.

Internal threats: Our training dataset consists of 3,162 bug reports,
which might raise concerns related to sample adequacy for analysis
and model fine-tuning. However, Majdik et al. [44] demonstrated
that a training set of around 2,500 samples can significantly enhance
performance in domain-specific tasks like named entity recognition,
summarization, and text generation.

Construct threats: The eports could introduce biases or incon-
sistencies in the model’s outputs. If the prompts are not carefully
crafted to align with the desired output format or guide the model
to generate unexpected responses, this could skew the results. Large
Language Models like Llama 3 can sometimes hallucinate or pro-
duce incorrect unstructured reports, which may impact the accuracy
of bug reports and influence our results. Additionally, these models
are highly dependent on the prompts given to them; slight changes
in the input can lead to significantly different outputs. This sensitiv-
ity introduces variability and potential bias into the data generation
process, affecting the reliability of our conclusions. We mitigate
this threat by carefully designing our prompts using the Alpaca-
LoRA template [64] and keeping them consistent throughout the
fine-tuning process.

Furthermore, LLMs are prone to hallucination, generating plausible-
sounding but factually incorrect or unsupported details—especially
when inferring missing sections. In our manual review, we observed
instances where the model filled in fields (e.g., actual vs. expected
behavior) with contextually plausible yet inaccurate content. Future
work will incorporate human validation steps and automatic con-
sistency checks to detect and filter out hallucinated information. To
mitigate the risk of data leakage, we mined the dataset of recent bug
reports from bugzilla from November 2024, ensuring that the LLMs
had not been exposed to similar data during their pre-training.
While computing evaluation measures, external variables such as
differences in the length of the bug report generated can lead to
unfair comparisons in n-gram overlap metrics, as models produc-
ing lengthier or detailed reports may provide helpful information
that does not align with well-structured bug reports, thereby low-
ering their scores. We tried to mitigate this issue by introducing
additional grading metrics i.e SBERT and CTQRS. Furthermore,
the quality of data preparation and reference unstructured reports
(pseudo-ground truth data) has an impact on the overall results.

External threats: The models, fine-tuned specifically for bug
reports belonging to the Mozilla family of projects and bug report
guidelines, thus, may not perform as effectively or as relevant in
other organizational contexts or with different types of reports,
limiting their broader applicability until they are fine-tuned per
the organization’s guidelines. However, generic testing on samples
sourced from [50] showed encouraging results, thus mitigating this
threat to a large extent.
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Input

Jagrit Acharya and Gouri Ginde

Output: Bug report as per bug report guidelines at Mozilla

Title: Issue with loading URLSs containing query parameters using "Open loaded scripts” feature

Summary:

Can'tuse "open loaded scripts" to
load a URL with query params
When load one with "Open loaded
scripts', the query parameter is
stripped.

That normalize code should only be
executed if the source could not be
found - otherwise source should not
be null and the rawSource should
be passed to the adapter.

Instruction

Oﬁ

e .
fine-tuned LLM Steps to Hepl{)du:}e (S2R)**: ; . ! Content arranged
1. Load the application where the "Open loaded scripts” feature is available. as per template

2. Navigate to a script that has been previously loaded and saved.

3. Attempt to reload the script by using the "Open loaded scripts” feature.
4. Provide a URL with query parameters in the input field (for example:

" https://example.com?param1=value1&param2=value2’).

**Expected Result (ER)**: The script should be reloaded from the provided URL, preservip§ any query
parameters.

**Actual Result (AR)**: The query parameters are stripped from the URL when attempting to reload the
script using "Open loaded scripts" feature.

**Additional Information**:
- Software Version: [version number]
- Build Number: [build number]

Missing information

= [
- Browser and OS: [specify browser name and operating system used during testing]

t/production/test]

Figure 6: Sample output from our proposed solution approach: Content gets automatically organized as per the template, and
missing information is also displayed for further editing for bug reporter

Construct threats: The evaluation metrics ROUGE-1, CTQRS
and METEOR emphasize structural or lexical overlap and can un-
derestimate semantic quality for example, penalizing a perfectly
clear paraphrase that uses different wording. To address this, we
plan to integrate human-judged evaluations and explore specialized
metrics that better capture developer-perceived clarity, usefulness,
and actionability of bug reports in future work. Incorporating hu-
man evaluations or developing specialized metrics tailored to bug
report generation could offer a more accurate assessment, which
will be part of our future work.

9 RELATED WORK

We discuss related work with respect bug report quality and in-
struction fine-tuning of LLMs as follows.

Bug Report Management (BRM): Bug report management
has evolved through studies focusing on quality assessment and
automation of software engineering tasks. Bettenburg et al. [76]
were the first who explore this issue and analyzed the summary,
steps to duplicate, and test cases in the bug report using traditional
ML techniques to focus on the quality aspects of bug reports. Zanetti
et al. [73] further checked for duplicate images to ensure the quality
of the description text and developed methods to assess report
validity. Chaparro et al. [11] explored quality assessment of S2Rs
using grammar parsing, neural sequence labelling, and matching of
S2Rs to graph-based execution models of the Android application

Since the advancement in NLP, bug report Summarization has
been explored widely. Kou et al. [37] used three sentence signifi-
cance factors, i.e. believability, sentence-to-sentence cohesion, and
topic association, to summarize the bug report. Later, Xiang and
Shao [70] proposed SumLLaMA, which used LLMs to generate
summaries from bug reports.

The significant manual effort required for bug triage and resolu-
tion [24, 76]. Breu et al. [7] explored the information requirements
in bug reports by studying the questions posed in 600 bug reports
from the Mozilla and Eclipse projects. Additionally, incomplete
or unclear S2Rs pose a big challenge for automated methods to
generate test cases from bug reports [22, 34]. While multiple NLP
approaches have been explored, as discussed above, the use of in-
struction fine-tuning on large language models (LLMs) to improve

bug report quality has not yet been investigated. This represents a
significant research gap, which our study aims to address.

Bug report quality: It has been widely studied, with various
methods proposed to evaluate and improve it [26, 76]. Many of
these methods use heuristic rules and expert insights to identify
key details in bug reports. He et al. [28] introduced a convolutional
neural network (CNN)-based approach to classify bug reports as
valid or invalid using only textual data, such as summaries and
descriptions. Similarly, Chen et al. [15] leveraged natural language
processing and quantifiable indicators to assess bug report quality
automatically. Building on this, we adopted the CTQRS framework
by Zhang et al. [74], which is a bug-report quality assessment frame-
work that systematically scores bug reports by combining morpho-
logical, relational, and analytical indicators through dependency
parsing. Morphological indicators (size, readability, punctuation)
capture structural and linguistic aspects; relational indicators (item-
ization, complete environment info, screenshots) examine whether
each standard field is properly provided; and analytical indicators
(interface elements, user behavior, system defects) tap into deeper
semantics by checking how clearly a report describes UI elements,
actions, and defect details. Each indicator is linked to desirable prop-
erties of atomicity, completeness, conciseness, understandability,
and reproducibility and is assigned rule-based weights to compute
an overall quality score with a maximum score of 17 points.

Instruction fine-tuning: Large pre-trained language models
are capable of executing a diverse variety of generative tasks utiliz-
ing human-annotated instruction data. Notable examples of such
tasks include story writing [72], email drafting, the design of menu
systems [35], poetry composition [9], code generation [49], and the
creation of food recipes [25]. Taking inspiration from these studies,
we explore instruction fine-tuning.

10 CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how instruction fine-tuned LLMs
can automatically convert casual, unstructured bug reports into
well-structured ones that closely follow standard templates. Our
experiments revealed that Qwen 2.5, when fine-tuned, consistently
outperformed other open-source models (Mistral 7B and Llama 3.2)
across multiple evaluation metrics, achieving a CTQRS score of 77%
, ROUGE-1 score of 0.64, and SBERT similarity of 0.82. These results
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underscore its ability to generate structured reports that closely
align with human-written outputs, matching the performance of
proprietary models like ChatGPT (75% CTQRS in 3-shot learning).

A key contribution of this work lies in addressing the challenge
of inconsistent bug report quality, which hinders software main-
tenance efficiency. By leveraging instruction fine-tuning, our ap-
proach ensures that critical components such as Steps to Reproduce,
Expected & Actual Behavior are systematically captured, even when
unstructured input lack explicit details. This capability reduces de-
veloper effort by clarifying ambiguous reports and helps reporters
identify and supply missing information.

Furthermore, our cross-project evaluation highlighted the model’s
robust generalization. When tested on bug reports from diverse
ecosystems (e.g., Eclipse, GCC, Apache), Qwen 2.5 maintained a
CTQRS score of 70% , proving its adaptability to varying project
contexts. Thus showcasing the efficacy of instruction fine-tuning
on open-source models, we provide evidence that such models can
serve as cost-effective, privacy-preserving, scalable alternatives to
proprietary systems like ChatGPT, without compromising much
on performance.

As future work, we plan to enhance the model’s capabilities
by integrating richer data sources (e.g., error snapshots, logs, and
code snippets), exploring advanced fine-tuning techniques such
as QLoRA, expanding support for additional bug-tracking plat-
forms (e.g., GitHub and Jira), and developing a real-time tool that
proactively assists reporters in providing missing details. These
improvements aim to enhance the bug-reporting experience and
minimize developers’ manual effort.
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