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Abstract

Virtual staining has emerged as a powerful alternative to traditional histopatho-
logical staining techniques, enabling rapid, reagent-free image transformations.
However, existing evaluation methods predominantly rely on full-reference image
quality assessment (FR-IQA) metrics such as structural similarity, which are orig-
inally designed for natural images and often fail to capture pathology-relevant
features. Expert pathology reviews have also been used, but they are inherently
subjective and time-consuming.
In this study, we introduce PaPIS (Pathology-Aware Perceptual Image Similar-
ity), a novel FR-IQA metric specifically tailored for virtual staining evaluation.
PaPIS leverages deep learning-based features trained on cell morphology seg-
mentation and incorporates Retinex-inspired feature decomposition to better
reflect histological perceptual quality. Comparative experiments demonstrate
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that PaPIS more accurately aligns with pathology-relevant visual cues and distin-
guishes subtle cellular structures that traditional and existing perceptual metrics
tend to overlook. Furthermore, integrating PaPIS as a guiding loss function in a
virtual staining model leads to improved histological fidelity.
This work highlights the critical need for pathology-aware evaluation frameworks
to advance the development and clinical readiness of virtual staining technologies.

Keywords: Image Quality Assessment, Virtual Staining, Perceptual Similarity,
Pathology-Aware Metrics

1 Introduction

In recent years, numerous virtual staining methods have been developed as an alter-
native to traditional histopathological staining techniques such as hematoxylin and
eosin (H&E), immunohistochemistry (IHC), and Masson’s trichrome [1]. Conventional
staining methods rely on chemical reagents, which can cause irreversible tissue alter-
ations, limiting subsequent analyses and multi-modal imaging studies. In contrast,
virtual staining preserves the tissue in its original state while computationally generat-
ing stained representations, enabling repeated analyses and facilitating the integration
of different imaging modalities [1].

One of the key advantages of virtual staining is the elimination of chemical
reagent consumption. Traditional staining protocols require costly chemical reagents,
whereas virtual staining is purely computational, significantly reducing the expense
of histopathological workflows. Additionally, virtual staining dramatically accelerates
the staining process. While conventional staining can take tens of minutes to several
hours, virtual staining can be completed within seconds or minutes, greatly improving
the efficiency of pathology pipelines[2].

Despite these advantages, virtual staining currently lacks evaluation methods
specifically tailored to the medical domain. Most assessments rely on full-reference
image quality assessment (FR-IQA) metrics, which compare a processed image to
a reference standard based on structural and perceptual similarities. While FR-IQA
metrics are well-established in general image processing and have been widely applied
in natural image quality assessment, their effectiveness in microscopic pathology imag-
ing remains limited [3]. A fundamental limitation of traditional FR-IQA approaches is
their focus on textural fidelity rather than histopathological relevance. These metrics
are primarily designed for natural images captured by cameras, prioritizing structural
and perceptual consistency without considering cellular morphology and tissue archi-
tecture, which are crucial for medical applications [3, 4]. Consequently, conventional
FR-IQA metrics often fail to accurately assess the diagnostic quality of virtual staining
images.

With advances in deep learning and feature engineering, perceptual evaluation met-
rics have increasingly enabled domain-specific comparisons [5, 6] . However, existing
perceptual similarity metrics remain heavily biased toward natural image charac-
teristics, making them inadequate for assessing medical imaging data. As a result,
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many virtual staining images cannot be effectively evaluated using current method-
ologies, highlighting the need for a domain-specific, histopathology-aware evaluation
framework [7].

To address this gap, this study proposes a histopathology-guided perceptual full-
reference image assessment metric specifically designed for virtual staining evaluation.
Additionally, an optimization framework for virtual staining models is developed based
on the proposed evaluation metric. By integrating domain-specific histopathologi-
cal knowledge into image quality assessment, this approach aims to provide a more
clinically relevant evaluation of virtual staining results, ultimately improving their
reliability and applicability in medical practice.

2 Literature Review

Virtual staining has emerged as a powerful approach for synthesizing H&E-equivalent
images from label-free modalities, offering a reagent-free alternative to traditional
histopathological staining. This label-free to stain transformation aims to replace
physical dyes by generating stained-like outputs directly from inputs such as aut-
ofluorescence or photon-based signals. Ecclestone et al. [8] introduced the Photon
Absorption Remote Sensing (PARS) system, which captures spectral and temporal
photon absorption signatures to emulate H&E staining with enhanced cellular detail.
Building on this direction, Rivenson et al. [9] and Wang et al. [10] demonstrated
the efficacy of deep learning in mapping autofluorescence images to realistic H&E
counterparts, broadening the applicability of virtual staining in clinical workflows.

The advent of generative deep learning models has further propelled the quality
and fidelity of virtual staining. Extensions of the PARS framework by Tweel et al. [11]
and Boktor et al. [12] integrated generative networks to process expanded spectral
inputs and time-domain signals, improving visual realism and structural preservation.
In parallel, diffusion-based models, such as those proposed by Saharia et al. [13],
have shown strong potential for high-fidelity image-to-image translation in biomedical
contexts. These advances build on foundational work in generative translation, notably
Pix2Pix [14] and CycleGAN [15], which have been adapted to address the specific
challenges of virtual staining tasks.

FR-IQA methods compare a processed image to a reference image to quantify dif-
ferences in structure, perception, and statistical features. Wang et al. [16] introduced
structural similarity index (SSIM), which evaluate pixel-wise differences and struc-
tural information to measure image fidelity. To further enhance structural evaluations,
Wang et al. [17] developed multi-scale structural similarity (MS-SSIM), incorporat-
ing multi-resolution analysis to improve robustness. Beyond hand-crafted approaches,
perceptual-based FR-IQA methods have been introduced to align more closely with
human perception. Zhang et al. [5] proposed the Learned Perceptual Image Patch
Similarity (LPIPS) metric, which utilizes deep neural networks to model perceptual
judgments based on feature representations from trained vision models. Ding et al. [6]
extended perceptual similarity analysis through Deep Image Structure and Texture
Similarity (DISTS), integrating structural and texture information to improve qual-
ity assessment. Tian et al. [18] explored the impact of multiple reference images in
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quality assessment, while Xian et al. [19] proposed structure-aware methods utilizing
high-order statistical moments to capture intricate quality attributes.

Recent research has explored the application of FR-IQA in medical imaging. Breger
et al. [3] demonstrated that standard FR-IQA metrics, originally designed for natural
images, may not be directly applicable to medical imaging tasks, including MRI, CT,
OCT, and digital pathology. Ohashi et al. [20] evaluated and adapted FR-IQA methods
to better align with medical image quality requirements. Varga et al. [21] proposed
optimized metric combinations to enhance prediction accuracy in medical imaging
contexts. Additionally, Sujana et al. [22] investigated FR-IQA for structural MRI
preprocessing, while Rodrigues et al. [23] examined perceptual quality assessment of
medical images and videos.

3 Methods

Figure 1a illustrates the overall framework of the proposed perceptual similarity met-
ric, PaPIS. This similarity metric assigns perceptual weights that reflect histological
performance. To extract feature representations, image patches are first transformed
into multi-channel embeddings using a pre-trained cell morphology segmentation
model based on the work of Ignatov et al. [24]. Their model, which achieves state-
of-the-art performance in nuclei segmentation and classification, adopts a dual-layer
encoder-decoder architecture with an EfficientNet-B7-based encoder, as shown in
Figure 1b.

Subsequently, intrinsic properties are extracted from the image features to obtain
the reflection map R and the estimated illumination map L, using the Retinex
algorithm[25]. The histology perceptual distance between these maps is then com-
puted, inspired by prior works such as SSIM [16] and DISTS [6]. By calculating the
distance between features derived from cell morphology, PaPIS offers a histology-aware
quantification of image differences. This contrasts with traditional texture-based met-
rics such as SSIM and PSNR, which are primarily designed to align with human visual
perception rather than pathological relevance.

To validate the practical utility of the proposed metric in pathological image anal-
ysis, we further apply it to evaluate the performance of a deep learning model that
translates label-free histological images into H&E-stained representations.

3.1 Cell Morphology Level Feature Representation

Current state-of-the-art Full-Reference perceptual image similarity metrics, such as
LPIPS[5] and DISTS[6], rely on feature extractors pre-trained on ImageNet to eval-
uate differences between generated and reference images. However, in the histology
domain, pathologists focus on distinct perceptual attributes that cannot be adequately
captured by models trained on natural image datasets.

To achieve superior performance in histological assessments, we utilize a feature
extractor built upon the implementation of a state-of-the-art cell morphology segmen-
tation task [24], which has demonstrated exceptional accuracy in nuclei segmentation
and classification. In work by ignatov et al. [24], cell morphology segmentation is
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Fig. 1 (a) The figure illustrates the overall framework of the PaPIS. Image patches are fed into
a pretrained feature extractor to obtain multi-channel feature representations. These features are
decomposed into a set of estimated illumination maps Li

a and reflectance maps Ri
a, where the super-

script i denotes the feature layer and the subscript a indicates the image type (Reference or Generated
images). The collection of decomposed components is subsequently used to compute perceptual simi-
larity distances between image pairs. (b) This panel presents the internal architecture of the pretrained
feature extractor. The feature extractor functions as the encoder component of a cell morphology
segmentation model. The subsequent decoder generates both a binary segmentation map Mb, which
preserves the spatial dimensions of the input, and a multi-layer classification map Mc. The fusion
of Mb, Mc, and the original image patch is then fed into a classification model to produce the final
classification label.

achieved using a dual-layer encoder-decoder architecture with an EfficientNet-B7-
based encoder, the structure of which is shown in Figure 1b. The computed latent
features utilized in our work, formally, can be written as:

feff (x) = {x̃(i)
j ; i = 0, . . . ,m; j = 1, . . . , ni} (1)

where x ∈ RH×W×C denotes the input image patch, m = 4 represents the number
of selected convolutional blocks within the EfficientNet backbone, and ni is the number

of output channels (feature maps) at block i. The term x̃
(i)
j refers to the j-th feature

map from block i, normalized via channel-wise min-max normalization to ensure scale
consistency across layers.

This formulation explicitly defines the multi-layer, multi-channel output of the
encoder, which serves as the foundation for subsequent perceptual analysis. The
architecture of the feature extractor is illustrated in Figure 1b.

To compare the perceptual focus of these distinct feature extractors, and obtain a
unified representation from the multi-layer feature maps, we compute a reconstructed
image IRec as follows:

5



IRec =
1

m

m∑
i=0

fin

 1

n

n∑
j=0

x̃
(i)
j

 (2)

Here, x̃
(i)
j denotes the j-th normalized feature map at layer i, as previously defined.

The inner summation computes the average feature response across all channels n
within each layer, while the function fin(·) integrates these responses. Specifically, fin
denotes a linear interpolation function that maps the current image feature of size
Rw×h to the original spatial resolution Rw0×h0 , where w0 and h0 correspond to the
width and height of the input image. The outer average aggregates information across
all m selected layers, resulting in the final reconstructed representation IRec, which
captures both local and hierarchical morphological features from the input image.

Figure 2 illustrates the visualization of extracted features, comparing the fea-
ture maps obtained from models pre-trained on the cell morphology histological task
(Fhisto) with those from models pre-trained on natural image datasets (Fnatural).
Specifically, Figure 2b shows that the deeper layers of Fhisto focus more strongly on
nuclear regions, exhibiting activation patterns that correspond to the locations of cell
nuclei. In contrast, Figure 2a demonstrates that Fnatural primarily captures low-level
texture patterns such as edges and gradients, which are characteristic of natural images
and reflect the visual features typically emphasized by models trained to match human
perception.

Fig. 2 (a) The first set of feature maps was visualized from a VGG16 model pretrained on the
ImageNet dataset. These feature maps correspond to channels 3, 8, 15, 22, and 29, as used in the
works of LPIPS [5] and DISTS [6]. (b) The second set of feature maps was extracted from the
encoder output of a pretrained segmentation model, with dimensions of R192, R288, R480, and R1344,
corresponding to channels at different encoder stages.

3.2 Retinex Properties on Features

In order to enhance the contrast of histological features, we apply the Multi-Scale
Retinex (MSR) algorithm [25] to decompose the extracted features into two distinct
components: the estimated illumination map and the reflectance map, which cor-
respond to the low-frequency and high-frequency components within the extracted
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feature space, respectively. The MSR algorithm models the decomposition of an input
feature map based on the following relationship:

I(x, y) = R(x, y) · L(x, y) (3)

where I(x, y) denotes the observed feature intensity at pixel location (x, y),
R(x, y) is the reflectance component capturing intrinsic feature structures (e.g., edges
and nuclei boundaries), and L(x, y) represents the illumination component modeling
smooth variations in local intensity due to shading or uneven activation.

To obtain a multi-scale estimation, we compute the illumination component at
each scale i as:

Li(x, y) = Fi(x, y) ∗Gσi(x, y) (4)

where Fi(x, y) denotes the extracted feature map at scale i, Gσi(x, y) is a 2D
Gaussian filter with standard deviation σi, and ∗ denotes the 2D convolution operation.
The choice of σi controls the spatial frequency captured at each scale.

The reflectance component at each scale is then derived by logarithmic subtraction:

Ri(x, y) = logFi(x, y)− logLi(x, y) (5)

where the logarithmic transformation serves to suppress multiplicative illumination
effects and enhance the structural contrast in the feature map. The resulting Ri(x, y)
highlights fine-grained morphological features relevant to histological analysis.

3.3 PaPIS: Pathological Perceptual Distance

PaPIS integrates both low-frequency and high-frequency perceptual distances to eval-
uate histopathological image similarity. The decomposition of feature maps into
illumination and reflectance components is based on the Retinex theory [25], which
models an image as the product of its intrinsic reflectance and smooth illumination.

Inspired by SSIM [16] and DISTS [6], we define the high-frequency distance by com-
paring reflectance features extracted from Retinex decomposition. The high-frequency
distance, denoted as Dhigh(x, y, α, β), is formulated as:

Dhigh(x, y, α, β) = αij

2µ
(i)
Rx̃j

µ
(i)
Rỹj

+ c1

(µ
(i)
Rx̃j

)2 + (µ
(i)
Rỹj

)2 + c1

+ βij

2σ
(i)
Rx̃j

σ
(i)
Rỹj

+ c2

(σ
(i)
Rx̃j

)2 + (σ
(i)
Rỹj

)2 + c2

(6)

In this formulation, the first term captures the similarity of mean values (µ) of
the reflected features, representing brightness consistency across spatial locations and
feature channels. The second term evaluates the similarity of standard deviations
(σ), which reflects structural consistency in the high-frequency domain. The reflection

statistics µ
(i)
Rx̃j

, µ
(i)
Rỹj

, σ
(i)
Rx̃j

, and σ
(i)
Rỹj

denote the mean and standard deviation of
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reflectance features x̃ and ỹ at layer i and channel j. Constants c1 and c2 are included to
ensure numerical stability. The weights αij and βij are randomized such that

∑
i,j αij+

βij = 1, ensuring a balanced contribution between brightness and structure.
The low-frequency distance, Dlow, is computed as the mean squared error (MSE)

between illumination maps derived from each feature channel via the Retinex
algorithm [25].

Finally, the complete PaPIS metric is defined as:

PaPIS(x, y, λ, α, β) = λ
m∑
i=0

ni∑
j=0

MSE(L(x̃
(i)
j ), L(ỹ

(i)
j ))

+Dhigh(x, y, α, β)

(7)

Here, λ is a hyperparameter that balances the contributions of the low-frequency
and high-frequency components in the final distance score.

3.4 PaPIS Metric-Guided Loss for Enhancing Virtual Staining
Models

Since PaPIS is utilized as a quality evaluation metric in generative tasks, incorporating
it as an optimization objective during training could further improve the performance
of virtual staining. Building on the unpaired training paradigm of the CycleGAN
model, we propose a PaPIS-guided framework for virtual staining, designed to trans-
form images from the PARS modality into H&E-stained representations. The complete
pipeline is illustrated in Figure 3.

3.4.1 PARS images Acquisition

The pixel-by-pixel registration of scanned whole slide images (WSIs) and the enhance-
ment process are based on the work by Tweel et al. [26]. Training patches are extracted
using an automated script specifically designed for large-scale whole slide images. This
script is capable of extracting the required patches within 15 seconds, significantly
improving efficiency. The training dataset is constructed in paired format rather than
in a random order, following the methodology outlined in the work of Tweel et al. [11].

3.4.2 PaPIS-guided Virtual Staining CycleGAN

Building upon the standard CycleGAN framework [15], we introduce an auxiliary
perceptual loss term based on the proposed PaPIS metric to encourage the generated
images to better align with histological properties of the target domain. This PaPIS-
based loss is defined as:

Lpapis(x,G(x)) = 1− PaPIS(x,G(x), λ, α, β) (8)

where x is the input unstained image and G(x) is the corresponding virtual H&E
image generated by the generator G. The PaPIS score quantifies the pathological
perceptual similarity between the input and generated image; thus, minimizing Lpapis

encourages perceptual closeness in both low- and high-frequency histological features.
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(a) PARS Scanning Workflow 

(c) model training(b) pixel-to-pixel WSI patching

Fig. 3 Pipeline for the PaPIS-guided virtual staining. Part (a) is adapted from [26]. The complete
pipeline consists of slide scanning, patch extraction, and model training, forming an end-to-end frame-
work for virtual staining.
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The overall training loss for the modified CycleGAN is formulated as:

Ltotal = λ1Lcycle + λ2Lpapis + λ3Lg + λ4Ld (9)

Here, Lcycle denotes the cycle consistency loss, Lg is the generator adversarial
loss, and Ld is the discriminator loss. The weights λ1, λ2, λ3, λ4 are hyperparameters
that control the contribution of each loss component. Figure 4 illustrates the modified
CycleGAN architecture with PaPIS-guided perceptual supervision.

Fig. 4 The architecture of the PaPIS-guided virtual staining model. Built upon the CycleGAN[15]
framework, the model incorporates additional loss terms to measure the distance between the gener-
ated (fake) H&E images and the real H&E images (ground truth), as well as the distance between
cycle-consistent H&E images and the real H&E images.

4 Experiments

4.1 Dataset Acquisition

4.1.1 Modalities of Images Acquisition

All scanning and post-processing procedures are detailed in Section 3.4.1. The dataset
consists of five pairs of whole slide images (WSIs) with dimensions of 18, 202×48, 800,
9, 200× 36, 200, 59, 600× 61, 418, 17, 664× 17, 876 and 35, 344× 37, 957, respectively.
Four of the scanned WSIs are divided into 1024× 1024 patches, resulting in a total of
10,086 patches. These patches are then randomly flipped and resized to 256× 256 for
the training process. The remaining WSI pair is designated for the comparative exper-
iment. A filtering process is first applied to extract histological regions, followed by
randomly cropping into 206 synchronized 1024×1024 patches for subsequent analysis.
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4.1.2 Virtual Stained Image Generate

The dataset utilized in this study was generated using a virtual staining model based
on the CycleGAN architecture [15]. The loss function parameters were set as follows:
λ1 = 2.0, λ2 = 1.0, λ3 = 1.0, and λ4 = 1.0. Training was conducted with a batch size
of 1. The Adam optimizer was used for both the generator and discriminator networks,
with a learning rate of 0.001 and β parameters of (0.5, 0.999). An accumulative gradient
strategy with an accumulation count of 2 was applied. A linear learning rate decay
strategy was employed using the LinearLrInterval scheduler, with updates every
1000 iterations. The learning rate decayed linearly from 0.001 to 0 between the 10,000th

and 50,000th iterations.

4.2 Comparison with Previous Metrics

For the comparison of image pairs, we calculate the following metrics: PSNR, SSIM
[16], MS-SSIM [17], LPIPS [5], and DISTS [6]. Based on the relationship between these
metrics and PaPIS scores, we define four distinct categories:

1. AH (Aligned High): Points exhibiting both high PaPIS scores and high val-
ues across the compared metrics, indicating strong agreement between PaPIS and
traditional measures.

2. AL (Aligned Low): Points with both low PaPIS scores and low metric values,
reflecting consistent low similarity across both evaluation methods.

3. PD (PaPIS-Dominant): Points where PaPIS scores are high despite low tradi-
tional metric values, suggesting cases where PaPIS captures relevant pathological
features overlooked by conventional metrics.

4. TD (Traditionally-Dominant): Points with low PaPIS scores but high tradi-
tional metric values, highlighting instances where traditional metrics indicate high
similarity, yet PaPIS identifies deficiencies in pathology-relevant features.

We categorize the comparison metrics into two groups: traditional handcrafted
metrics and perceptual feature-based perceptual metrics.

4.2.1 PaPIS and Handcrafted Metrics

In this section, we compare our proposed metric with traditional handcrafted metrics,
specifically SSIM [16]. A case-by-case scatter plot is presented in Figure 5, while
additional image-to-image examples are provided in Figure 6 for further comparison.

Among the AH and AL points, both selected data points exhibit strong align-
ment between PaPIS and traditional metrics in assessing image quality. In contrast,
the PD and TD points highlight the differing sensitivities of PaPIS and traditional
approaches. PD points correspond to cases where nuclear structures and spatial align-
ment are well-preserved, yet fine textures and subtle color variations result in lower
scores from traditional metrics, revealing their limitations in capturing histological
relevance. Conversely, TD points receive high scores from traditional metrics due to
uniform textures or consistent coloration but may lack proper histological structures
or exhibit misalignment in cellular organization, leading to lower PaPIS scores. This
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ssim = 0.429
PaPIS = 0.409

ssim = 0.680
PaPIS = 0.652

ssim = 0.503 
PaPIS = 0.605

ssim = 0.821
PaPIS = 0.589

Fig. 5 Scatter plot comparing SSIM and PaPIS across different image pairs. Selected data points
are labeled as AH (Aligned High), AL (Aligned Low), PD (PaPIS-Dominant), and TD (Traditionally-
Dominant), representing specific cases for analysis.

contrast underscores the ability of PaPIS to better capture pathologically significant
features that traditional methods may overlook.

4.2.2 PaPIS and Other Feature-Based Perceptual Metrics

In this section, PaPIS is compared with other perceptual-based similarity metrics,
specifically LPIPS [5] and DISTS [6]. A case-by-case scatter plot is presented in Figure
7 and 8. At the AH and AL points, both metrics consistently identify images as either
high or low in overall quality. However, at the PD points, the images tend to be con-
centrated in regions with high cellular density, whereas at the TD points, they are
primarily located at tissue edges or in areas with sparse cellular distribution. Notably,
neither perceptual metric provides explicit information regarding morphological differ-
ences in cellular structures. Nevertheless, compared to handcrafted metrics, traditional
perceptual metrics exhibit higher consistency with PaPIS, suggesting an improved
alignment in assessing histologically relevant features.

4.3 PaPIS-guided Virtual Staining

For the PaPIS-guided virtual staining process, the model is trained following the
parameters outlined in Section 4.1.2, ensuring a fair comparison of performance. The
weight coefficient λ2 is set to 2.0, introducing the LPaPIS loss term to balance the
overall loss function. As shown in Figure 9, the PaPIS-guided model enhances the con-
sistency of cellular morphology, including cell position, shape, and size. Additionally,
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AH

AL

PD

TD

PaPIS = 0.590
SSIM = 0.822

PaPIS = 0.611
SSIM = 0.557

PaPIS = 0.634
SSIM = 0.596

PaPIS = 0.631
SSIM = 0.591

PaPIS = 0.562
SSIM = 0.750

PaPIS = 0.619
SSIM = 0.813

PaPIS = 0.476
SSIM = 0.594

PaPIS = 0.484
SSIM = 0.548

PaPIS = 0.478
SSIM = 0.575

PaPIS = 0.650
SSIM = 0.712

PaPIS = 0.641
SSIM = 0.730

PaPIS = 0.630
SSIM = 0.734

PaPIS = 0.652
SSIM = 0.680

PaPIS = 0.483
SSIM = 0.427

PaPIS = 0.613
SSIM = 0.577

PaPIS = 0.498
SSIM = 0.878

Fig. 6 Case-wise comparison of PaPIS and SSIM values across different histological image samples.

the model effectively mitigates certain image detail losses, leading to a more faithful
reconstruction of fine structures. In terms of overall perceptual quality, the generated
images exhibit improved resemblance to the ground truth. The PaPIS-guided virtual
staining model demonstrates enhanced performance in both histological similarity and
high-frequency texture preservation, optimizing pathological feature retention in the
generated images.

4.3.1 Regional Sensitivity Analysis via Heatmap Visualization

To further assess the spatial sensitivity of PaPIS compared to traditional metrics, we
conducted a region-wise similarity analysis on a representative whole slide image. The
image was divided into non-overlapping 1024×1024 patches, and similarity scores were
computed using both SSIM and PaPIS. These values were then visualized as spatial
heatmaps, as shown in Fig. 10. Warmer colors indicate higher similarity.

Observations.

From this analysis, we derive the following observations:

1. Texture Sensitivity vs. Morphological Awareness: SSIM shows a sharp
contrast between background and tissue regions, primarily responding to local
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lpips = 0.611
PaPIS = 0.409

lpips = 0.310
PaPIS = 0.652

lpips = 0.353
PaPIS = 0.611

lpips = 0.247
PaPIS = 0.571

Fig. 7 Scatter plot comparing LPIPS and PaPIS across different image pairs. Each data point
represents an image pair evaluated by both metrics, illustrating variations in their assessments. This
comparison highlights differences in perceptual and pathology-aware similarity measurements between
the two approaches.

dists = 0.251
PaPIS = 0.409

dists = 0.175
PaPIS = 0.652

dists = 0.180
PaPIS = 0.542

dists = 0.217
PaPIS = 0.606

Fig. 8 Scatter plot comparing DISTS and PaPIS across different image pairs.
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Ground Truth CycleGAN PaPIS-guided CycleGAN

Fig. 9 Comparison of virtual staining results, showing ground truth images, CycleGAN-generated
images, and PaPIS-guided CycleGAN-generated images. The figure illustrates differences in staining
quality and structural preservation across the methods.

texture presence. In contrast, PaPIS produces smoother gradients at tissue bound-
aries and highlights internal structure variations, suggesting better alignment with
morphological integrity.

2. Detection of Staining Artifacts: In certain regions with high SSIM but visu-
ally suboptimal staining, PaPIS assigns noticeably lower scores, demonstrating its
capacity to penalize virtual staining artifacts even when conventional metrics fail
to do so.

3. Intra-Tissue Structural Differentiation: PaPIS reveals greater variance within
tissue interiors than SSIM, which tends to yield flat responses. This indicates
that PaPIS is more sensitive to histologically relevant features such as nuclear
organization or glandular structure.

4. Sensitivity to Functional Regions: In regions containing critical micro-
anatomical structures (e.g., ducts, tumor nests), SSIM maintains high scores
despite morphological degradation. In contrast, PaPIS shows significant score drops,
reflecting its better alignment with pathology-relevant structures.

5. Complementary Applications: The divergence between SSIM and PaPIS
highlights potential complementary use cases: SSIM may remain useful for detect-
ing broad texture-based distortions, while PaPIS provides superior guidance for
histology-aware evaluation and diagnostic quality control.

These insights underscore the importance of incorporating domain-specific per-
ceptual criteria into similarity metrics. PaPIS enables fine-grained, region-aware
evaluation that aligns more closely with expert interpretation and diagnostic relevance,
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Fig. 10 Patch-wise similarity heatmaps of a representative WSI. Left: SSIM heatmap; Middle:
PaPIS heatmap; Right: Magnified views of selected regions. Warmer colors indicate higher similarity.
Compared to SSIM, which often assigns high similarity scores in low-texture or background areas,
PaPIS demonstrates greater sensitivity to morphological and contextual cues.

offering a distinct advantage over traditional full-reference IQA methods in virtual
staining workflows.

5 Discussions and Conclusions

In this study, we introduced PaPIS, a pathology-guided FR-IQA metric tailored for
virtual staining evaluation. By leveraging a cell morphology-aware feature extractor
and Retinex-based feature decomposition, PaPIS captures both high-frequency nuclear
structures and low-frequency illumination characteristics—features highly relevant to
histological interpretation. Our experimental results demonstrate that PaPIS achieves
superior performance in identifying pathology-relevant differences across image pairs,
outperforming traditional handcrafted metrics (e.g., SSIM, PSNR) and perceptual
feature-based metrics (e.g., LPIPS, DISTS). Furthermore, the integration of PaPIS as
a perceptual loss into a CycleGAN-based virtual staining model improved histologi-
cal fidelity in generated outputs, suggesting that PaPIS can be used not only as an
evaluation tool but also as a training objective.

A notable limitation of the current study is the absence of subjective validation
by expert pathologists. While PaPIS shows promising quantitative alignment with
structural and morphological features important to histopathology, its clinical valid-
ity remains to be established through direct correlation with expert perception and
diagnostic utility. This limitation stems from the logistical complexity and resource
demands of conducting large-scale reader studies. Nevertheless, we acknowledge this as
a critical direction for future work. We plan to design a reader study in collaboration
with board-certified pathologists, involving pairwise comparisons of virtual staining
outputs across different models and correlation analysis between PaPIS scores and
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expert ratings. This will help quantify the interpretability and clinical relevance of the
proposed metric.

Beyond the current experiments based on PARS imaging, we also anticipate the
applicability of PaPIS to other label-free virtual staining modalities such as autoflu-
orescence microscopy, quantitative phase imaging, and hyperspectral imaging. Since
PaPIS operates in a feature space that captures cell-level morphology rather than
being tied to specific pixel distributions, it is inherently modality-agnostic and can
generalize across structurally diverse imaging sources, as long as the target virtual
stain preserves histological structures.

Moreover, the modular structure of PaPIS enables generalization across tissue
types and staining protocols. While the current implementation uses a feature encoder
trained on H&E-based nuclei segmentation, the framework can be extended by incor-
porating encoders trained on different tissue domains or fine-tuned using transfer
learning. This flexibility opens opportunities for PaPIS to serve as a generalized per-
ceptual metric across various virtual staining scenarios, including different stain types
(e.g., Masson’s trichrome, IHC) and across species or clinical contexts.

Despite the limitations in subjective validation, the strong quantitative perfor-
mance and architectural flexibility of PaPIS position it as a valuable tool for automated
quality assessment in computational pathology. It offers an interpretable, pathology-
aware alternative to conventional IQA metrics and has the potential to guide model
selection, training optimization, and quality control in large-scale virtual staining
workflows. In future work, we aim to further explore PaPIS’s clinical relevance, extend
its applicability to broader imaging contexts, and integrate it with human-in-the-loop
systems for semi-automated quality assurance.
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