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Abstract

This paper examines how a profit-maximizing monopolist competes against

a free but capacity-constrained public option. The monopolist strategically re-

stricts its supply beyond standard monopoly levels, thereby intensifying con-

gestion at the public option and increasing consumers’ willingness-to-pay for

guaranteed access. Expanding the capacity of the public option always reduces

producer welfare and, counterintuitively, may also reduce consumer welfare.

In contrast, introducing a monopolist to a market served only by a capacity-

constrained public option unambiguously improves consumer welfare. These

findings have implications for mixed public-private markets, such as housing,

education, and healthcare.
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1. Introduction

Government-run programs like housing, education, and healthcare provide a critical

safety net by making essential goods and services accessible through free or heavily

subsidized offerings. Prominent examples include subsidized public housing in Singa-

pore, tuition-free universities in Norway and Germany, and free healthcare in United

Kingdom, Canada, and Australia. These programs, however, often face demand that

exceeds their supply, leading to rationing through waiting times or lotteries. As a

result, profit-maximizing firms frequently emerge to provide the same goods and ser-

vices, either as a stopgap or as an alternative to the rationed public provision. Thus,

such settings are best understood as mixed markets where private providers operate

alongside a capacity-constrained public option.

This paper focuses on the case in which private provision substitutes for the public

option. For instance, individuals often choose between public and private education,

but rarely combine the two. In such settings, public options serve not only as a safety

net, but also as potential sources of competitive pressure on their private counterparts.

This paper examines the strategic interactions that emerge when private providers

compete against a rationed public option.

To that end, I present a parsimonious model of a mixed market in which the same

good is supplied by a capacity-constrained public option and a profit-maximizing

monopolist. There is a unit mass of risk-neutral consumers with heterogeneous val-

uations for the good. Each consumer has a unit demand and chooses to acquire the

good from one of the two suppliers. The public option offers the good for free but

randomly rations it whenever demand exceeds capacity. In contrast, the monopolist

faces no capacity constraints and sells the good through a screening mechanism.

The screening problem in this setting differs from the standard monopoly problem

in three key ways: (i) the monopolist cannot fully exclude buyers from obtaining the

good due to the presence of the public option; (ii) each buyer’s outside option is

endogenously determined by her valuation for the public option and is therefore type-

dependent; and (iii) by limiting its own supply, the monopolist increases the demand

for the public option, which exacerbates rationing and worsens the buyers’ outside

option. As a result, the mechanism shapes not only the monopolist’s allocation and

pricing decision but also the broader mixed-market environment in which it operates.

The first result establishes that the optimal mechanism takes the form of a posted
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price: buyers whose valuation exceeds a certain threshold purchase from the monop-

olist, while the lower-value buyers rely exclusively on the public option. Crucially,

this threshold ensures that the public option is rationed, which reflects the monop-

olist’s ability to strategically exploit the public option’s capacity constraint in order

to raise buyers’ willingness-to-pay for guaranteed access. The threshold type is there-

fore indifferent between receiving the good for free through a rationed allocation and

purchasing it at the posted price, where the degree of rationing is itself determined

by the threshold type.

Based on the characterization of the optimal mechanism and the resulting mixed-

market outcome, the paper then analyzes how consumer and producer welfare vary

with the public option’s capacity. This comparative statics exercise is particularly

relevant for policies aimed at introducing a public option into an initially monopolistic

market, or expanding the capacity of an existing one within a mixed market. I first

show that the monopolist responds to a capacity increase by further restricting its own

supply in order to keep the public option congested. Consequently, the monopolist’s

market share and its profit decline as capacity grows.

The implications for consumers, however, are more nuanced. Absent any strategic

response by the monopolist, a capacity increase would naturally ease rationing at

the public option. But the monopolist offsets this benefit by raising the threshold for

guaranteed access, which shifts even more consumers to the public option. Further-

more, as the threshold increases, the marginal buyer becomes a higher-type agent,

potentially leading to an increase in her willingness-to-pay for guaranteed access.

I show that even with the monopolist’s offsetting response, an increase in capacity

always eases rationing, which improves the welfare of low-value buyers who rely on

the public option. On the other hand, I show that an increase in capacity could,

counterintuitively, lead the monopolist to raise its price. Hence, capacity-constrained

public options may fail to exert competitive pressure. Nonetheless, I identify necessary

and sufficient conditions on the buyers’ type distribution under which a capacity

expansion always lowers the monopoly price, benefiting even the high-value buyers

who do not use the public option.

Finally, the paper considers the impact on consumer welfare when a monopolist

enters a market initially served solely by a public option. I show that consumer welfare

unambiguously improves: high-value buyers gain from the introduction of guaranteed

access via the monopolist, while low-value buyers benefit from reduced congestion at
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the public option as some of its demand shifts towards the monopolist.

Of course, the tractable model developed in this paper does not capture all di-

mensions of mixed markets. In particular, it assumes that the public option provides

the same quality good as the monopolist for free, and that the monopolist operates

as a substitute to the public option. These assumptions are not only satisfied in some

real-world settings, but they also represent the most favorable conditions under which

a public option might exert competitive pressure. Yet, as the main comparative stat-

ics results reveal, even under these favorable conditions, introducing or expanding a

public option does not necessarily improve consumer welfare.

In the Online Appendix, I consider the more general setting in which the public

option supplies a good of lower quality at a subsidized price, characterize the optimal

selling mechanism, and discuss the extent to which the qualitative results of the paper

extend to the general setting. Additionally, I consider the case where the monopolist

operates as a complement to the public option, with consumers “topping up” their

demand in the private market. Unsurprisingly, the public option no longer exerts a

competitive pressure on the private market in this setting, but a capacity expansion

improves consumer surplus because all consumers now rely on the public option.

Related Literature: This paper relates to a large literature on redistribution through

public provision of goods or in-kind transfers. Nichols and Zeckhauser (1982) show

that participation costs can be used to screen for higher-need individuals, while Black-

orby and Donaldson (1988) demonstrate that in-kind transfers can be more effective

screening devices than cash. Weitzman (1977) shows that random allocation may

outperform market allocation when the welfare criterion differs from utilitarianism,

and Che et al. (2013) show that even under utilitarian objectives, random alloca-

tions with resale can be superior to competitive markets when agents face budget

constraints. More recently, Condorelli (2013), Dworczak et al. (2021), and Akbarpour

et al. (2024a,b) apply mechanism design to study redistribution under general welfare

criteria. However, all these papers consider the public option or transfer program in

isolation. In contrast, this paper analyzes a setting in which the public option and

a monopolist coexist within a broader mixed market, with no single provider fully

determining market outcomes.

In this regard, the most closely related papers are Besley and Coate (1991); Coate

et al. (1994); Kang (2023); Kang and Watt (2024). Besley and Coate (1991) show that
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agents self-select into in-kind transfer programs when a private market is available,

and Kang and Watt (2024) studies the optimal design of such transfers in the presence

of a competitive private market. However, both papers abstract from the impact

of the transfer program on private market prices. Coate et al. (1994), in contrast,

examine the competitive effect of in-kind transfers on private market prices, but treat

participation in the program as exogenous. Kang (2023) studies how the government’s

choices regarding the public option’s pricing, quality, and allocation affect both the

composition of demand in the private market and its price.

However, the central focus across all of these papers is the design of the public

option in the presence of a private (and typically, perfectly competitive) market. By

contrast, this paper considers the complementary design problem of a monopolist in

the presence of a public option that is equally accessible to all agents. Thus, the cen-

tral focus of this paper is understanding how the private market’s profit-maximizing

incentives interact with the dual objectives of the public option as a safety net and

as a source of competitive pressure.

2. Model

Setup: A unit mass of risk-neutral buyers each have a unit demand for a good. Each

buyer’s valuation for the good, which is the buyer’s private information, is drawn

independently from a distribution F over a compact interval V := [v, v̄], with v̄ > v ≥
0. The distribution F is assumed to be regular : it admits a positive and differentiable

density f , and the associated virtual value function φ(v) := v − (1 − F (v))/f(v) is

strictly increasing.1 A buyer with valuation v ∈ V who pays t ≥ 0 and receives the

good with probability x ∈ [0, 1] earns a payoff of xv − t.

Each buyer may acquire the good from one of two suppliers: a monopolist or a

public option. For simplicity, I assume that neither face a cost of production. The

monopolist seeks to maximize its expected revenue from selling the good. The public

option offers the good for free but it can only supply a mass k ∈ (0, 1) of goods. When

demand for the public option exceeds its capacity, it allocates the good through a

random rationing rule. Specifically, if a mass q of buyers demands the public option,

each receives the good with probability min{1, k/q}.
1This is a stronger regularity condition than Myerson (1981), which does not assume differentiability
of the density function.
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Timing: First, the monopolist selects a selling mechanism. Then, each buyer pri-

vately observes her valuation for the good and chooses whether to participate in the

monopolist’s mechanism or opt for the public option. For those who choose the mo-

nopolist, the mechanism determines whether they receive the good and how much

they pay. Buyers who fail to acquire the good from the monopolist may then turn

to the public option, reflecting its role as a safety net.2 Finally, the public option

allocates the good according to a random rationing rule to buyers who either initially

selected it or came to rely on it after failing to purchase from the monopolist.

Mechanisms: Without loss of generality, I restrict attention to direct revelation

mechanisms that induce all buyers to initially choose the monopolist. A mechanism is

a pair (x, t), where x : V → [0, 1] is a measurable function representing the allocation

rule and t : V → R+ is a measurable and bounded function representing the transfer

rule. A buyer who reports type v̂ ∈ V pays t(v̂) to the monopolist and is allocated a

good from the monopolist with probability x(v̂). With the complementary probability

1− x(v̂), the buyer must instead rely on the public option.

If all buyers participate in the mechanism and report their types truthfully, the

mass of buyers who rely on the public option, referred to as the public option’s induced

demand, is given by

q(x) :=

∫
V

(
1− x(v)

)
dF (v).

Accordingly, conditional on relying on the public option, a buyer receives the good

with probability min{1, k/q(x)}. Thus, a buyer with valuation v who reports v̂ (while

all other buyers report truthfully) earns an expected payoff of

U(v̂, v|x, t) :=
(
x(v̂) +

(
1− x(v̂)

)
·min

{
1,

k

q(x)

})
v − t(v̂).

A mechanism (x, t) is incentive compatible if truthful reporting is optimal for each

buyer when all others report truthfully. Formally, (x, t) is incentive compatible if

U(v, v|x, t) ≥ U(v̂, v|x, t), ∀v, v̂ ∈ V . (IC)

2In the Online Appendix, I consider the reverse timing: the outcome of the public option is resolved
before that of the monopolist’s mechanism. In that case, buyers who fail to receive the good from
the public option may “top up” their demand by turning to the monopolist.
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Furthermore, the mechanism is individually rational if each buyer weakly prefers

participating in it rather than relying solely on the public option:

U(v, v|x, t) ≥ v ·min

{
1,

k

q(x)

}
, ∀v ∈ V . (IR)

The monopolist’s objective is to maximize its expected revenue by offering an incen-

tive compatible and individually rational mechanism.

This setting has three distinctive features: First, while the monopolist can ensure

a buyer is allocated the good, it cannot fully exclude a buyer from receiving the good.

Second, as reflected in the (IR) constraint, a buyer’s outside payoff is type-dependent.

Finally, the mechanism determines the level of rationing through the public option’s

induced demand. Consequently, the mechanism affects buyers’ willingness-to-pay for

a guaranteed allocation from the monopolist.

When k = 0, these three distinctive features disappear and the mechanism design

problem reduces to a standard monopoly screening problem. In this case, the revenue-

maximizing mechanism is a posted price of vM := min{v ∈ V : φ(v) ≥ 0} (Myerson,

1981).

3. Optimal Mechanism

Let X denote the space of all measurable allocation rules and let T denote the space

of all measurable and bounded transfer rules. An optimal mechanism solves:

max
(x,t)∈X×T

∫
V
t(v)dF (v) s.t. (x, t) satisfies (IC) and (IR). (Opt-1)

An optimal mechanism (x, t) is essentially unique if any (x̂, t̂) that solves (Opt-1)

satisfies x(v) = x̂(v) and t(v) = t̂(v) for almost all v ∈ V .
To characterize the solution to (Opt-1), define the function G : V → V by

G(v) := φ(v)F (v) +

∫ v̄

v

φ(s)dF (s),

which is a strictly increasing function with v = G(v) < G(v̄) = v̄.
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Proposition 1 Let ϑ be the unique value of v ∈ V that solves

k

F (v)2
·G(v) = φ(v). (1)

The essentially unique optimal mechanism is given by the pair (x, t) where

x(v) =


0 if v < ϑ

1 if v ≥ ϑ

and t(v) =


0 if v < ϑ

ϑ

(
1− k

F (ϑ)

)
if v ≥ ϑ

.

Furthermore, ϑ ∈ (max{vM , F−1(k)}, v̄).

Proposition 1 establishes that the optimal mechanism is a posted price that seg-

ments consumers into two groups based on their valuation. “High-value” buyers pur-

chase the good from the monopolist, thereby assuring themselves access to the good,

even though the public option is available at no monetary cost. Conversely, “low-

value” buyers rely only on the public option, accepting the risk of not being rationed

a good due to capacity constraints.3

The distinction between high- and low-value buyers is determined by a cutoff type

ϑ ∈ V that uniquely solves the trade-off captured in (1). To build intuition, consider a

monopolist who sells only to consumer types above some cutoff v ≥ max{vM , F−1(k)}.
The monopolist’s expected revenue in this case is given by

v(1− F (v))− k

F (v)

∫ v̄

v

φ(s)dF (s)︸ ︷︷ ︸
:=C(v)

,

where the first term represents the revenue the monopolist would earn in a standard

monopoly setting, while the second term captures the revenue loss (compared to

the standard setting) due to competition from the public option. Specifically, in a

standard screening problem, the monopolist can extract φ(s) from a type-s consumer.

In the current setting, however, a fraction k/F (v) of this virtual surplus is no longer

extractable. Importantly, this fraction is equal to the rationing probability with which

3While the mechanism design problem is framed such that all buyers initially approach the monop-
olist and turn to the public option only as a fallback, the mixed-market outcome under the optimal
mechanism can be implemented with the monopolist posting a price and buyers choosing (once and
for all) between the monopolist or the public option.

7



consumers obtain the good from the public option.

The expected revenue above is equivalent to that of a standard monopolist with

costly production, where C(v) can be interpreted as the “effective cost” of producing

a mass 1−F (v) of goods. The function C is differentiable and strictly decreasing with

C(v̄) = 0, and its derivative is proportional to G. From this perspective, raising the

cutoff v marginally reduces the effective production cost by C ′(v), which corresponds

to the left-hand side of (1). However, doing so also reduces the monopolist’s revenue by

φ(v) from excluding the cutoff type-v buyer. The optimal cutoff ϑ is thus characterized

by equating the marginal cost savings with the marginal loss in revenue.

The optimal cutoff ensures that the public option’s induced demand exceeds its

capacity, i.e., F (ϑ) > k, leading to rationing. Furthermore, ϑ > vM , meaning that the

public option crowds out some of the monopolist’s demand.4

4. Comparative Statics

This section examines two sets of comparative statics. First, I analyze how changes

in the capacity of a public option affect consumer and producer welfare in a mixed

market. Second, I consider how consumer welfare changes when a monopolist enters

a market that was previously served only by a public option.

Expanding a Public Option: What is the effect of introducing a public option to

a monopoly market, or expanding the capacity of an existing public option in a mixed

market? For example, in the United States, where the housing market is primarily

supplied by the private sector, how would increasing the public housing supply affect

producer and consumer welfare?

To address these questions, I examine how the monopolist and consumer surplus

vary with the public option’s capacity. For each k ∈ (0, 1), let ϑ(k) ∈ V represent the

cutoff type that solves (1). Define

π(k) :=
k

F
(
ϑ(k)

)
4In principle, there are incentive compatible and individually rational mechanisms in which the
monopolist sells to all types v ≥ vM . However, such a mechanism would be suboptimal because a
cutoff of vM does not fully exploit the monopolist’s benefit from a congested public option.
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as the public option’s rationing probability given the monopolist’s optimal mecha-

nism, and let

p(k) := ϑ(k) (1− π(k))

represent the revenue-maximizing posted price. The monopolist’s surplus is given by

P(k) := p(k)
(
1− F

(
ϑ(k)

))
,

and the surplus of a type-v consumer is given by

U(v, k) =


π(k) · v if v < ϑ(k)

v − p(k) if v ≥ ϑ(k)

.

Finally, let

C(k) :=
∫
V
U(v, k)dF (v)

denote the aggregate consumer surplus.

The first result in this section establishes that as the public option’s capacity

expands, the set of consumers served by the monopolist continuously shrinks.

Proposition 2 The cutoff type ϑ(k) is continuous and strictly increasing in k. Fur-

thermore, limk→0 ϑ(k) = vM and limk→1 ϑ(k) = v̄.

Given the continuity of the cutoff type, the associated rationing probability, price,

and surplus functions are all continuous. Furthermore, as k → 1, an expanding mass

of consumers obtain the good from the public option with diminishing congestion.

Hence, when the capacity of the public option is sufficiently large, consumers are

strictly better off than in a monopoly-only market (i.e., when k = 0).

At the same time, as k → 1, the monopolist serves an increasingly narrow segment

of the market and earns vanishing profits. More generally, expanding the capacity of

the public option always erodes the monopolist’s profits, as formalized in the following

proposition.

Proposition 3 The monopolist’s surplus P(k) is strictly decreasing in k.

What about consumer welfare? First, consider low-value consumers who rely on

the public option. These consumers benefit from a capacity expansion if and only
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if the public option’s rationing probability increases. Here, an expansion generates

two opposing effects. First, holding fixed the set of consumers who buy from the

monopolist, the additional capacity alleviates congestion at the public option. Second,

as established in Proposition 2, the monopolist responds to a capacity expansion by

raising the cutoff type, which increases the public option’s induced demand.

The following proposition establishes that the first effect always dominates, and

thus, low-value consumers unambiguously benefit from an increase in the public op-

tion’s capacity despite the monopolist’s strategic response.5

Proposition 4 For all k ∈ (0, 1) and all v ≤ ϑ(k), ∂U(v, k)/∂k ≥ 0.

Next, consider high-value consumers who purchase from the monopolist. These

consumers benefit from a capacity expansion if and only if it leads the monopoly

to lower its price. Again, an expansion generates two opposing effects on the posted

price. On the one hand, as implied by Proposition 4, an expansion improves the public

option’s rationing probability. This makes the public option more attractive for all

buyer types, which exerts a downward pressure on the monopolist’s price. On the

other hand, as established by Proposition 2, the marginal buyer from the monopolist

now has a higher valuation and may be willing to pay more for a guaranteed allocation.

This creates an opposing upward pressure. The following proposition establishes sharp

conditions under which the downward pressure on prices always dominates.

Proposition 5 Suppose for all v ∈ (vM , v̄),

v f(v)

1− F (v)
+

v G′(v)

G(v)
≥ 2. (2)

Then for all k ∈ (0, 1) and all v > ϑ(k), ∂U(v, k)/∂k ≥ 0. Conversely, if (2) fails for

some v ∈ (vM , v̄), then there exists an open set K ⊆ (0, 1) such that for all k ∈ K

and all v > ϑ(k), ∂U(v, k)/∂k < 0.

Proposition 5 links the price effect of expanding the public option to two under-

lying market primitives. The first is the sensitivity of the monopolist’s demand to

changes in the cutoff type (and thus the posted price), as captured by the first term

5The proof of Proposition 4 shows that almost all low-value consumers strictly benefit from an
increase in the public option’s capacity.
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on the left-hand side of (2). A high elasticity of demand implies that the monop-

olist cannot sharply raise the cutoff without a substantial loss in its market share.

The second is the curvature of the monopolist’s effective cost function, reflected in

the second term. The higher this term is over (vM , v̄), the more convex the effective

cost function, implying that the marginal cost savings from further restricting supply

diminish rapidly.

When market demand is sufficiently elastic or the monopolist’s effective cost is

sufficiently convex, as captured by (2), the monopolist refrains from excessively re-

stricting supply in response to a capacity expansion. In this case, the downward

pressure on price arising from the improved outside option dominates the upward

pressure from the increased valuation of the marginal buyer, thereby benefiting all

high-value consumers.

As Proposition 5 makes clear, whether high-value consumers benefit from a ca-

pacity expansion is fully determined by whether the distribution of types above the

standard monopoly cutoff satisfies Condition (2). For certain distributions, this con-

dition simplifies substantially:

Corollary 1 Suppose vM = v and that F has an increasing hazard rate. Then for all

k ∈ (0, 1) and all v > ϑ(k), ∂U(v, k)/∂k ≥ 0 if and only if f(v) v ≥ 2.

More broadly, Proposition 4 and Proposition 5 taken together imply that a ca-

pacity expansion is especially likely to improve aggregate consumer welfare when a

sufficiently large fraction of buyers are excluded by a monopoly-only market. In this

case, even when Condition (2) fails, the welfare gains accruing to low-value consumers

may offset any losses experienced by high-value consumers.

Let us conclude this section with two examples: Consider first the case where F

is the uniform distribution over the unit interval. In this case, vM = 0.5, and the

left-hand side of (2) becomes
v

1− v
+ 2.

Hence, high-value consumers always benefit as k increases in this case. In particular,

as shown in Figure 1a, introducing a public option with a small capacity k to an

intially monopoly-only market raises the surplus of each buyer type. More generally,

Figure 1b shows that the aggregate consumer surplus C(k) is strictly increasing.

Next, consider the case where F is the uniform distribution over the interval [1, 2].

In this case, vM = v = 1, and applying Corollary 1, we can conclude that high-value
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v
v

U

v̄

v̄ − vM

v̄ − p(k)

vM ϑ(k)

(a)

0
k

C

1

0.5

0.125

(b)

Figure 1: In both panels, consumer values are uniformly distributed over the unit
interval, so v = 0, v̄ = 1, and vM = 0.5. Panel (a) compares each type-v buyer’s
payoff in a monopoly-only market—U(v, 0), shown in the solid blue line—to that of
a mixed market—U(v, k) for a small k ∈ (0, 1), shown in the dashed red line. Panel
(b) depicts how the aggregate consumer surplus varies with the capacity.

buyers do not always benefit from a capacity expansion. Specifically, the left-hand

side of (2) becomes
v

2− v
+

2v(v − 1)

v2 − 2v + 2
,

which is strictly less than 2 over the interval (v, v̂), where v̂ ≈ 1.206. In this case,

as shown in Figure 2a, introducing a public option with a small capacity k to an

initially monopoly-only market lowers the surplus of most buyer types. As a result,

the aggregate consumer surplus C(k) is non-monotone, as shown in Figure 2b.

Introducing a Monopolist What is the effect of introducing a profit-maximizing

monopolist into a market served exclusively by a congested public option? This ques-

tion is particularly relevant for markets like the UK’s National Health Service, where

public provision is widespread but allocation is rationed due to capacity constraints.

The following proposition establishes that introducing a monopoly to such a mar-

ket improves the welfare of each consumer type.6

6In fact, the proof of Proposition 6 shows that almost all consumers strictly benefit from introducing
a monopolist to the public-option-only market.

12



v

U

v̄

v̄ − vM

v̄ − p(k)

v︸︷︷︸
=vM

ϑ(k)

(a)

0
k

C

1

1.5

0.5

(b)

Figure 2: In both panels, consumer values are uniformly distributed over [1, 2], so
v = vM = 1 and v̄ = 2. Panel (a) compares each type-v buyer’s payoff in a monopoly-
only market—U(v, 0), shown in the solid blue line—to that of a mixed market—
U(v, k) for a small k ∈ (0, 1), shown in the dashed red line. Panel (b) depicts how the
aggregate consumer surplus varies with the capacity.

Proposition 6 For all k ∈ (0, 1) and all v ∈ V, U(v, k) ≥ k · v.

The intuition behind Proposition 6 is straightforward. High-value consumers who

purchase the good from the monopolist reveal a preference for guaranteed allocation

at the posted price rather than a free allocation from a rationed public option. As a

result, they are better off than under the public option alone. Moreover, demand at the

public option decreases because high-value types no longer rely on it. This improves

the rationing probability and thus raises the surplus for low-value consumers who

continue to rely on the public option. Therefore, all consumer types benefit from the

introduction of the monopolist.

5. Conclusion

This paper studies how a profit-maximizing monopolist responds to competition from

a capacity-constrained public option. The monopolist strategically restricts supply to

exacerbate rationing at the public option, thereby increasing consumers’ willingness
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to pay for guaranteed access. In equilibrium, high-valuation consumers purchase from

the monopolist, while low-valuation consumers rely on the rationed public option.

The analysis yields several policy implications. First, interventions that introduce

a public option into a monopolistic market or expand the capacity of an existing pub-

lic option within a mixed market can reduce consumer welfare unless the intervention

is sufficiently large. While any such intervention always benefits low-valuation con-

sumers who rely on the public option, a small intervention may induce the monopolist

to raise its price, thereby reducing surplus for high-valuation consumers. Second, I

show that introducing a profit-maximizing monopolist to a market served only by a

capacity-constrained public option unambiguously improves consumer surplus for all

types.

These findings highlight the interplay between public and private providers. Im-

portantly, policy targeting the public provision of goods and services in mixed markets

should account for the strategic responses of private firms. The framework developed

here also provides a tractable foundation for future work, for example, studying the

design of optimal tax schemes to finance the costly provision of public goods in mixed

markets.
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Appendix

Proof of Proposition 1. Given an allocation rule x ∈ X , define the transformed

allocation probability χ(·|x) : V → [0, 1] by

χ(v̂|x) := x(v̂)

(
1−min

{
1,

k

q(x)

})
.

We can then express the payoff, net of the outside option, of a type-v buyer from

reporting v̂ as

U(v̂, v|x, t)− v ·min

{
1,

k

q(x)

}
= χ(v̂|x)v − t(v̂).

A mechanism (x, t) satisfies (IC) if and only if the pair (χ(·|x), t) satisfies

χ(v|x)v − t(v) ≥ χ(v̂|x)v − t(v̂), ∀v, v̂ ∈ V , (IC′)

and similarly, the mechanism satisfies (IR) if and only if

χ(v|x)v − t(v) ≥ 0, ∀v ∈ V . (IR′)

Written in this format, it is evident that we can leverage Myerson (1981) to conclude

that a mechanism (x, t) satisfies (IC) if and only if χ(·|x) is non-decreasing, and for

all v ∈ V ,
t(v) = χ(v|x)v −

∫ v

v

χ(s|x)ds− u(v|x, t), (3)

where u(v|x, t) := χ(v|x)v− t(v). Furthermore, an incentive-compatible (x, t) satisfies

(IR) if and only if u(v|x, t) ≥ 0.

Consequently, the monopolist’s revenue from an incentive-compatible mechanism

(x, t) can be expressed as

R(x, t) :=

∫
V
χ(v|x)φ(v)dF (v)− u(v|x, t).

Clearly, if (x, t) is an optimal mechanism, then u(v|x, t) = 0.

Moreover, if (x, t) is an optimal mechanism, then q(x) > k. To see why, suppose, for

the sake of contradiction, that q(x) ≤ k. By definition, χ(v|x) = 0 for all v ∈ V , which
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further implies that t(v) = 0 for all v ∈ V . Consequently, the monopolist’s expected

revenue is R(x, t) = 0. However, consider an alternative mechanism (x̂, t̂) ∈ X × T ,

where x̂(v) = 1[v ≥ v̄ − ϵ] for ϵ > 0 and t̂ is given by (3) with u(v|x̂, t̂) = 0. The

monotonicity of x̂ implies that χ(·|x̂) is non-decreasing. Hence, (x̂, t̂) is incentive-

compatible and individually rational. Furthermore, for ϵ small enough, q(x̂) > k and

v̄ − ϵ > vM . It is then straightforward to see that R(x̂, t̂) > 0. Thus, to avoid the

contradiction, an optimal mechanism (x, t) must satisfy q(x) > k.

We can now decompose the optimization problem (Opt-1) into an equivalent

nested problem in which the monopolist first maximizes its profits for a given level

of induced demand Q > k at the public option, and then optimizes over the induced

demand. Formally, the monopolist solves:

max
Q∈(k,1]

{
max
x∈X

(
1− k

Q

)∫
V
x(v)φ(v)dF (v) s.t. x is non-decreasing, and q(x) = Q

}
.

Consider first the inner problem for some fixed Q ∈ (k, 1]. Define vQ := F−1(Q) as

the Qth-quantile type. Since the inner problem is a constrained linear programming

problem, it is clear that x(v) = 1[v ≥ vQ] is the essentially unique maximizer.7 Thus,

the value function of the inner problem is (1− k/Q)
∫ v̄

vQ
φ(v)dF (v).

Next, consider the outer optimization problem. Since there is a one-to-one map-

ping between the induced demand Q and the quantile type vQ, the outer problem is

equivalent to:

max
v∈(F−1(k),v̄]

R(v) :=

(
1− k

F (v)

)∫ v̄

v

φ(s)dF (s). (Opt-2)

Lemma 1 (Opt-2) has a unique maximizer ϑ ∈ (F−1(k), v̄), and it is characterized

by the unique solution to (1). Furthermore, ϑ > vM .

Proof. Since F is regular, R(·) is continuous and differentiable over the interval

(F−1(k), v̄) with

R′(v) = f(v)

[
k

F (v)2
G(v)− φ(v)

]
≡ f(v)

F (v)

[
k

F (v)
G(v)− φ(v)F (v)

]
︸ ︷︷ ︸

:=r(v)

.

7Section 1 of the Online Appendix establishes this fact in a more general setting.
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Notice that limv→F−1(k) R(v) = R(v̄) = 0. Thus, by Rolle’s Theorem, there exists a

cutoff type ϑ ∈ (F−1(k), v̄) that solves (1).

Let us next show that any cutoff type ϑ ∈ (F−1(k), v̄) that solves (1) satisfies

ϑ > vM . This is trivially true if vM ≤ F−1(k), so let us focus instead on the case

that vM > F−1(k). Since F−1(k) > v for k > 0, this implies that vM > v. This

in turn implies φ(vM) = 0. From (1), φ(ϑ) = (k/F (ϑ)2)G(ϑ) > 0. Hence, by strict

monotonicity of the virtual surplus function, ϑ > vM .

Finally, let us show that ϑ is the unique solution to (1), or equivalently, the unique

value with r(ϑ) = 0. For all v ≤ F−1(k),

r(v) ≥ G(v)− φ(v)F (v) =

∫ v̄

v

φ(s)dF (s) = v
(
1− F (v)

)
> 0,

and

r(v̄) = −φ(v̄)(1− k) < 0.

Hence, all solutions to (1) must be in the interval (max{vM , F−1(k)}, v̄). Moreover,

over this interval, the mapping v 7→ r(v) is continuous and strictly decreasing so that

R is strictly concave. As a result, ϑ is the unique solution to (1) and the unique

maximizer to (Opt-2).

The characterization of the essentially unique optimal mechanism in Proposition 1

then follows immediately from Lemma 1.

Proof of Proposition 2. For a given type v ∈ V and capacity k ∈ (0, 1), define

r(v, k) :=
k

F (v)
·G(v)− φ(v)F (v),

which is continuous in both arguments. From the proof of Lemma 1, for each k ∈ (0, 1),

there exists a unique type ϑ(k) ∈ (max{vM , F−1(k)}, v̄) such that r(ϑ(k), k) = 0. This

immediately establishes the continuity of the mapping k 7→ ϑ(k) over (0, 1).

For each k, the mapping v 7→ r(v, k) is strictly decreasing over (max{vM , F−1(k)}, v̄).
Furthermore, for each v ∈ (max{vM , F−1(k)}, v̄), ∂r(v, k)/∂k = G(v)/F (v) > 0,

where the inequality follows because G is a strictly increasing function with G(v) >

G(v) = v ≥ 0. Thus, for any k′, k′′ ∈ (0, 1) with k′′ > k′,

0 = r(ϑ(k′), k′) = r(ϑ(k′′), k′′) > r(ϑ(k′′), k′),
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which implies that ϑ(k′′) > ϑ(k′), as desired.

To establish the limiting results, let ϑ(1) := limk→1 ϑ(k) and ϑ(0) := limk→0 ϑ(k).

For all k ∈ (0, 1), ϑ(k) ∈ (F−1(k), v̄). Thus, v̄ = limk→1 F
−1(k) ≤ ϑ(1) ≤ v̄, estab-

lishing the first limit result. Additionally, ϑ(k) > vM for all k ∈ (0, 1), which implies

ϑ(0) ≥ vM . Additionally, note that for all k ∈ (0, 1),

0 = r(ϑ(k), k) <
k

F (vM)
·G(ϑ(k))− φ(ϑ(k))F (ϑ(k)).

Taking the limit as k → 0 implies that 0 ≤ −φ(ϑ(0))F (ϑ(0)). Thus, we must have

φ(ϑ(0)) ≤ 0, which by the definition of vM , implies that ϑ(0) ≤ vM . We can therefore

conclude that vM = ϑ(0), as desired.

Proof of Proposition 3. For a given cutoff v ∈ V and capacity k ∈ (0, 1), define

the monopolist’s revenue by

R(v, k) :=

(
1− k

F (v)

)∫ v̄

v

φ(s)dF (s),

which is a continuous and differentiable function. Additionally, for each k ∈ (0, 1),

P(k) = R(ϑ(k), k) = maxv∈[F−1(k),v̄] R(v, k).

Given that the mapping k 7→ ϑ(k) is continuous and strictly increasing (Proposi-

tion 2), it is differentiable almost everywhere. Hence, the value function k 7→ P(k) is

also differentiable almost everywhere. By the envelope theorem,

P ′(k) =
−1

F (ϑ(k))

∫ v̄

ϑ(k)

φ(v)dF (v) < 0,

for almost all k ∈ (0, 1). Hence, the mapping k 7→ P(k) is strictly decreasing, con-

cluding the proof.

Proof of Proposition 4. Since the mapping k 7→ ϑ(k) is continuous and strictly

increasing (Proposition 2), it is almost everywhere differentiable. In fact, since f is

assumed to be differentiable (recall the stronger notion of regularity), the mapping

k 7→ ϑ(k) is everywhere differentiable, which in turn implies that k 7→ π(k) is also

differentiable.

Given any k ∈ (0, 1), ∂U(v, k)/∂k = π′(k) · v for v < ϑ(k), and ∂U(ϑ(k), k)/∂k =

π′(k) · ϑ(k) + π(k)ϑ′(k). Hence, it suffices to prove that π′(k) ≥ 0 for all k ∈ (0, 1) to
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establish the desired result.

To that end, recall the function r(v, k) from the proof of Proposition 2. For each

k ∈ (0, 1), the cutoff type ϑ(k) is implicitly defined by r
(
ϑ(k), k

)
= 0, or equivalently,

π(k)G
(
ϑ(k)

)
= φ

(
ϑ(k)

)
F
(
ϑ(k)

)
. By implicitly differentiating,

π′(k) =
ϑ′(k)

G
(
ϑ(k)

)(φ(ϑ(k))f(ϑ(k))+G′(ϑ(k))(1− π(k)
))

> 0,

where the inequality follows because k 7→ ϑ(k) and v 7→ G(v) are strictly increasing

functions, and because φ
(
ϑ(k)

)
> φ(vM) ≥ 0 and G

(
ϑ(k)

)
> G(v) = v ≥ 0. Hence,

the mapping k 7→ π(k) is strictly increasing, which concludes the proof.

Proof of Proposition 5. Since k 7→ ϑ(k) is differentiable under the assumption

that f is differentiable, the mapping k 7→ p(k) is also differentiable.

If p′(k) ≤ 0 for all k ∈ (0, 1), then for all k ∈ (0, 1) and all v > ϑ(k), ∂U(v, k)/∂k ≥
0. Conversely, if p′(k) > 0 for some k′ ∈ (0, 1), then by continuity, there exists a

neighborhood K := (k′ − δ, k′ + δ) for δ > 0 small enough such that p(·) is increasing
over K. In this case, for all k ∈ K and all v > ϑ(k), ∂U(v, k)/∂k < 0.

Notice that p′(k) ≤ 0 is equivalent to

π′(k) ≥ ϑ′(k)

ϑ(k)

(
1− π(k)

)
⇔ ϑ′(k)

G
(
ϑ(k)

)(φ(ϑ(k))f(ϑ(k))+G′(ϑ(k))(1− π(k)
))

≥ ϑ′(k)

ϑ(k)

(
1− π(k)

)
⇔φ

(
ϑ(k)

)
≥

1− F
(
ϑ(k)

)
f
(
ϑ(k)

) (
1− ϑ(k) ·

G′(ϑ(k))
G
(
ϑ(k)

) )

⇔ϑ(k) ·
f
(
ϑ(k)

)
1− F

(
ϑ(k)

) + ϑ(k) ·
G′(ϑ(k))
G
(
ϑ(k)

) ≥ 2, (4)

where the first line follows from the definition of p(k), the second follows from the

characterization of π′(k) is the proof of Proposition 4, the third line follows be-

cause π(k)G
(
ϑ(k)

)
= φ

(
ϑ(k)

)
F
(
ϑ(k)

)
by (1), which can be equivalently written

as (1 − π(k))G
(
ϑ(k)

)
= ϑ(k)

(
1 − F (ϑ(k))

)
, and the last line follows from algebraic

manipulation.

Therefore, p′(k) ≤ 0 if and only if (4) holds. From Proposition 2, we know that
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k 7→ ϑ(k) is continuous and its image is (vM , v̄). Thus, (4) holds for all k ∈ (0, 1) if

and only if (2) holds for all v ∈ (vM , v̄).

Proof of Corollary 1. (“If” direction): Suppose f(v) v ≥ 2. Then for any v ∈ V ,
we have

2 ≤ v f(v)

1− F (v)
≤ v f(v)

1− F (v)
+

v G′(v)

G(v)
,

where the first inequality follows from the fact that F has an increasing hazard rate,

and the second inequality follows from the fact that G is an increasing and non-

negative function. Hence, Condition (2) is satisfies for all v ∈ V , and the desired

result follows from Proposition 5.

(“Only-if” direction): Suppose f(v) v < 2. Then

2 >
vM f(vM)

1− F (vM)
+

vM G′(vM)

G(vM)
,

where the inequality follows from the fact that vM = v and G′(v) = φ′(v)F (v) = 0.

By continuity, there exists an interval (vM , vM +δ) for δ > 0 small enough over which

Condition (2) fails, and the desired result follows from Proposition 5.

Proof of Proposition 6. For each k ∈ (0, 1) and v ∈ V ,

U(v, k) ≥ min

{
k

F (ϑ(k))
, 1

}
· v ≥ k · v,

where the first inequality follows from (IR), and the last follows because ϑ(k) >

F−1(k) and v ≥ v ≥ 0. Furthermore, since ϑ(k) < v̄, the last inequality is strict for

all v > 0.
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Online Appendix

A General Model of Public Option This section generalizes the baseline model

in two directions. First, I now allow for public option’s good to be of lower quality than

the one supplied by the monopolist. Second, the public option now supplies the good

for a subsidized price. Formally, the monopolist supplies a good of quality θm > 0, and

seeks to maximize its profit. The public option offers a good of quality θp ∈ (0, θm] at

an exogenously fixed price of ρ ≥ 0. Without loss of generality, normalize θm = 1 and

denote θp/θm := θ ∈ (0, 1]. A buyer with valuation v ∈ V who pays t ≥ 0 and receives

a good of quality θ̃ ∈ {θ, 1} with probability x ∈ [0, 1] earns a payoff of xθ̃v − t.

If ρ > θv, then buyer types v ∈ [v,min{vM , ρ/θ}) would be excluded by both

the monopolist and the public option.8 In this case, the market outcome would be

equivalent to one in which buyer valuations are drawn from a truncated distribution

supported on [min{vM , ρ/θ}, v̄]. For expositional simplicity, I therefore assume ρ ≤ θv

so that no buyer types are excluded by the public option.

As in the baseline model, a mechanism is a pair (x, t) ∈ X × T , where a buyer

who reports type v̂ ∈ V pays t(v̂) to the monopolist and is allocated a good from the

monopolist with probability x(v̂). With the complementary probability 1− x(v̂), the

buyer must instead rely on the public option.

If all buyers report their types truthfully, the public option’s induced demand is

q(x) :=

∫
V

(
1− x(v)

)
dF (v).

Accordingly, a buyer with valuation v who reports v̂ while all other buyers report

truthfully earns an expected payoff of

U(v̂, v|x, t) := x(v̂)v +
(
1− x(v̂)

)
·min

{
1,

k

q(x)

}
(θv − ρ)− t(v̂).

A mechanism (x, t) is incentive compatible if

U(v, v|x, t) ≥ U(v̂, v|x, t), ∀v, v̂ ∈ V , (IC)

8Recall that vM denotes the monopoly price in the standard monopoly setting.
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and the mechanism is individually rational if

U(v, v|x, t) ≥ min

{
1,

k

q(x)

}
(θv − ρ), ∀v ∈ V . (IR)

The monopolist’s objective is to maximize its expected revenue by offering an incen-

tive compatible and individually rational mechanism. The monopolist therefore solves

the following mechanism design problem:

max
(x,t)∈X×T

∫
V
t(v)dF (v) s.t. (x, t) satisfies (IC) and (IR). (MD)

Given a mechanism (x, t), define the transformed allocation rule by

χ(v̂|x) := x(v̂)

(
1− θ ·min

{
k

q(x)
, 1

})
,

and define the transformed transfer rule by

τ(v̂|x, t) := t(v̂)− ρx(v̂) ·min

{
k

q(x)
, 1

}
.

Notice that payoffs net of the outside option can now be written as

U(v̂, v|x, t)− (θv − ρ) ·min

{
k

q(x)
, 1

}
= χ(v̂|x)v − τ(v̂|x, t).

Thus, a mechanism (x, t) satisfies (IC) if and only if

χ(v|x)v − τ(v|x, t) ≥ χ(v̂|x)v − τ(v̂|x, t), ∀v, v̂ ∈ V . (IC′)

Similarly, (x, t) satisfies (IR) if and only if

χ(v|x)v − τ(v|x, t) ≥ 0, ∀v ∈ V . (IR′)

Thus, leveraging Myerson (1981), a mechanism (x, t) satisfies (IC) if and only if

(a) χ(·|x) is non-decreasing, and
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(b) For all v ∈ V ,

t(v) = χ(v|x)v + ρx(v) ·min

{
k

q(x)
, 1

}
−
∫ v

v

χ(s|x)ds− u(v|x, t).

Moreover, an incentive-compatible mechanism (x, t) satisfies (IR) if u(x, t) := χ(v|x)v−
τ(v|x, t) ≥ 0.

Consequently, the monopolist’s revenue from an incentive-compatible mechanism

(x, t) can be expressed as∫
V
t(v)dF (v)

=

∫
V
χ(v|x)φ(v)dF (v) + ρ ·min

{
k

q(x)
, 1

}∫
V
x(v)dF (v)− u(x, t)

=

∫
V
x(v)

[
φ(v)

(
1− θ ·min

{
k

q(x)
, 1

})
+ ρ ·min

{
k

q(x)
, 1

}]
dF (v)− u(x, t).

Clearly, if (x, t) is an optimal mechanism, then u(x, t) = 0.

Given an allocation rule x ∈ X and an arbitrary induced demand Q ∈ [0, 1], define

R(x,Q) :=

∫
V
x(v)

[
φ(v)

(
1− θ ·min

{
k

Q
, 1

})
+ ρ ·min

{
k

Q
, 1

}]
dF (v)

We can decompose the optimization problem (MD) into the following equivalent

nested problem:

max
Q∈(k,1]

{
max
x∈X

R(x,Q) s.t. χ(·|x) is non-decreasing, and q(x) = Q

}
.

Let us first solve the inner constrained linear programming problem. To that end, fix

some Q ∈ [0, 1]. First, notice that if

1− θ ·min

{
k

Q
, 1

}
= 0,

then the problem is trivial. The optimal solution is any allocation rule x ∈ X (mono-

tone or not) such that q(x) = Q.
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Next, consider instead the case where

1− θ ·min

{
k

Q
, 1

}
> 0.

In this case, χ(·|x) is non-decreasing if and only if x is non-decreasing. Let XM be the

set of non-decreasing allocation functions, which is a convex and compact subset of

the set of integrable allocation functions. Define the subset

XQ
M := {x ∈ XM : q(x) = Q}.

Recall that vQ := F−1(Q) is defined as the Qth-quantile type. Define the allocation

rule xQ(v) := 1[v ≥ vQ], and notice that xQ ∈ XQ
M , so XQ

M is non-empty. Moreover,

since the mapping x 7→ q(x) is linear and continuous, the subset XQ
M is also a convex

and compact set. Therefore, the inner linear programming problem given by

max
x∈XQ

M

R(x,Q) (IP)

attains its maximum at an extreme point of XQ
M . From Winkler (1988) (Proposition

2.1), x is an extreme point of XQ
M if there exists a weight α ∈ [0, 1] and step functions

x1(v) = 1[v ≥ v1] and x2(v) = 1[v ≥ v2] with cutoffs v1, v2 ∈ V such that x =

αx1 + (1− α)x2 and q(x) = Q.

Suppose the inner problem attains its maximum at x∗ = αx1 + (1 − α)x2 where

α ∈ (0, 1) and the step functions x1, x2 have cutoffs v1 < v2, respectively. Since q(·)
is linear, we have

q(x∗) = αq(x1) + (1− α)q(x2) = αF (v1) + (1− α)F (v2).

At the same time, the fact that x∗ ∈ XQ
M implies that q(x∗) = q(xQ) = F (vQ).

Equating the two expressions for q(x∗), we have that vQ ∈ (v1, v2) and

α =
F (v2)− F (vQ)

F (v2)− F (v1)
.

24



The monopolist’s profit from implementing x∗ is then given by

R(x∗, Q) =

(
1− θ ·min

{
k

Q
, 1

})[∫ v̄

v2

φ(v)dF (v) + α

∫ v2

v1

φ(v)dF (v)

]

+ ρ ·min

{
k

Q
, 1

}[
1−

(
αF (v1) + (1− α)F (v2)

)
︸ ︷︷ ︸

=F (vQ)

]

<

(
1− θ ·min

{
k

Q
, 1

})∫ v̄

vQ
φ(v)dF (v) + ρ(1−Q) ·min

{
k

Q
, 1

}
=R(xQ, Q),

where the inequality follows because

1− θ ·min

{
k

Q
, 1

}
> 0

by assumption, and because the strict monotonicity of φ implies

EF

[
φ
∣∣v ∈ [v1, v2]

]
< EF

[
φ
∣∣v ∈ [vQ, v2]

]
.

Consequently, xQ is the essentially unique allocation rule in XQ
M at which the inner

problem attains its maximum.

Let us next solve the outer optimization problem. Since Q = F (vQ) by construc-

tion, choosing Q ∈ [0, 1] is equivalent to choosing a cutoff type v ∈ V . Hence, the
outer problem is equivalent to:

max
v∈V

(
1− θ ·min

{
k

F (v)
, 1

})∫ v̄

v

φ(s)dF (s) + ρ(1− F (v)) ·min

{
k

F (v)
, 1

}

≡max
v∈V

(1− F (v))

[
v

(
1− θ ·min

{
k

F (v)
, 1

})
+ ρ ·min

{
k

F (v)
, 1

}]
(OP)

Generically, (OP) has a unique solution v∗ ∈ V . The optimal mechanism is then
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given by

x(v) =


0 if v < v∗

1 if v ≥ v∗

and

t(v) =


0 if v < v∗

v∗
(
1− θ ·min

{
k

F (v∗)
, 1
})

+ ρ ·min
{

k
F (v∗)

, 1
}

if v ≥ v∗
.

Thus, a posted price mechanism remains optimal in this general setting. Moreover,

when θ is close to 1 and ρ is close to 0, the optimal cutoff v∗ that solves (OP) is close

to the optimal cutoff ϑ that solves (Opt-2). Hence, the posted price of Proposition 1

along with the associated comparative statics results in the baseline model extend to

the general setting presented here.

However, the general setting also allows for other outcomes depending on the

parameters of the model. For example, if both k, θ ≈ 1 and ρ is bounded away from

zero (which, given the assumption that ρ ≤ θv, requires that v ≫ 0), the optimal

cutoff is given by

v∗ = min{v ∈ V : (1− θ)φ(v) + ρ ≥ 0}.

In this case, v∗ ≤ vM , implying that the presence of the public option leads to a

crowding-in effect. Intuitively, when k ≈ 1, the monopolist would have to exclude

almost all buyers in order to induce rationing at the public option, which entails the

monopolist earning vanishing profits. In contrast, simply posting a price of v∗(1−θ)+

ρ ≈ ρ allows the monopolist to sell to almost all buyers at a sufficiently high enough

price so that its profits are bounded away from zero. In the limit, as k, θ → 1, the

mixed market resembles one of a duopoly market where firms engage in a Bertrand

competition with one of the firms having zero marginal cost (the monopoly) and the

other firm having a marginal cost of ρ (the public option).

Private Market as a Complement to Public Option In this section, I return

to the baseline model where the public option supplies a good of the same quality as

the monopolist for free. However, I consider the following alternate timing:
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Timing: First, the monopolist selects a selling mechanism. Then, each buyer pri-

vately observes her valuation for the good and chooses whether to participate in the

monopolist’s mechanism or opt for the public option. For those who choose the public

option, the good is allocated for free according to a random rationing rule. Buyers

who fail to acquire the good from the public option may then turn to the monopolist,

allowing buyers to “top up” their demand via the private market. Finally, for buyers

who initially chose the monopolist or came to rely on it after failing to get the good

from the public option, the mechanism determines whether they receive the good and

how much they pay. Importantly, I assume that the monopolist cannot condition the

mechanism on whether a buyer first approached the public option.9

Notice that in this setting, it is a weakly dominant strategy for each buyer type

to first approach the public option. Thus, the rationing probability at the public

option is k, regardless of the mechanism chosen by the monopolist. This also implies

that a mass 1− k of buyers in the market need to top up their demand through the

monopolist. Furthermore, because the public option is equally accessible to all buyers,

the type distribution of buyers who seek to top up their demand is F .

Consequently, the monopoly faces a standard screening problem, and the optimal

mechanism is a posted price at the standard monopoly price vM . Given a capacity

k ∈ (0, 1), the monopolist’s profit is given by

P(k) := (1− k) · vM
(
1− F

(
vM
))
,

and the surplus of a type-v consumer is given by

U(v, k) =


k · v if v < vM

v − (1− k) · vM if v ≥ vM
.

As is clear from these expressions, a capacity expansion always lowers the monopoly

profits and increases the surplus of low-value buyers (v < vM). This is similar to the

comparative statics established in Proposition 3 and Proposition 4. Moreover, in con-

trast to Proposition 5, a capacity expansion in this setting always increases the surplus

9If the monopolist could condition the mechanism on whether a buyer first approached the public op-
tion, then it would optimally refuse to sell to all buyers who did not initially choose the monopolist.
The outcome would then be the same as the baseline model.
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of high-value buyers (v ≥ vM) without additional conditions on the market primitives.

Intuitively, since the monopolist can no longer induce varying demand at the public

option through its mechanism, expanding the public option’s capacity improves the

rationing probability without giving rise to any offsetting strategic behavior from the

monopolist. Therefore, all buyers are more likely to have their demand met through

a free public option rather than an expensive private market.

Finally, notice that type-v’s surplus in a market served only by a public option is

k · v. Hence, introducing a monopoly to a market initially served only by a capacity-

constrained public option is beneficial only to high-value buyers. This stands in con-

trast to Proposition 6 in which almost all buyer types benefit.
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