Computer Science > Software Engineering
[Submitted on 3 May 2022]
Title:Deep API Learning Revisited
View PDFAbstract:Understanding the correct API usage sequences is one of the most important tasks for programmers when they work with unfamiliar libraries. However, programmers often encounter obstacles to finding the appropriate information due to either poor quality of API documentation or ineffective query-based searching strategy. To help solve this issue, researchers have proposed various methods to suggest the sequence of APIs given natural language queries representing the information needs from programmers. Among such efforts, Gu et al. adopted a deep learning method, in particular an RNN Encoder-Decoder architecture, to perform this task and obtained promising results on common APIs in Java. In this work, we aim to reproduce their results and apply the same methods for APIs in Python. Additionally, we compare the performance with a more recent Transformer-based method, i.e., CodeBERT, for the same task. Our experiment reveals a clear drop in performance measures when careful data cleaning is performed. Owing to the pretraining from a large number of source code files and effective encoding technique, CodeBERT outperforms the method by Gu et al., to a large extent.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.