Computer Science > Cryptography and Security
[Submitted on 17 Jul 2025]
Title:Architectural Backdoors in Deep Learning: A Survey of Vulnerabilities, Detection, and Defense
View PDF HTML (experimental)Abstract:Architectural backdoors pose an under-examined but critical threat to deep neural networks, embedding malicious logic directly into a model's computational graph. Unlike traditional data poisoning or parameter manipulation, architectural backdoors evade standard mitigation techniques and persist even after clean retraining. This survey systematically consolidates research on architectural backdoors, spanning compiler-level manipulations, tainted AutoML pipelines, and supply-chain vulnerabilities. We assess emerging detection and defense strategies, including static graph inspection, dynamic fuzzing, and partial formal verification, and highlight their limitations against distributed or stealth triggers. Despite recent progress, scalable and practical defenses remain elusive. We conclude by outlining open challenges and proposing directions for strengthening supply-chain security, cryptographic model attestations, and next-generation benchmarks. This survey aims to guide future research toward comprehensive defenses against structural backdoor threats in deep learning systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.